The base of a solid right pyramid is a square with an edge length of [tex]n[/tex] units. The height of the pyramid is [tex]n-1[/tex] units.

Which expression represents the volume of the pyramid?

A. [tex]\frac{1}{3} n^2 (n-1)[/tex] units[tex]^3[/tex]

B. [tex]\frac{1}{8} n (n-1)[/tex] units[tex]^3[/tex]

C. [tex]\frac{1}{3} n^2 (n-1)[/tex] units[tex]^3[/tex]

D. [tex]\frac{1}{3} n^3 (n-1)[/tex] units[tex]^3[/tex]



Answer :

To find the volume of a pyramid with a square base, we'll use the volume formula for a pyramid, which is given by:

[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]

Here, the base of the pyramid is a square with edge length [tex]\( n \)[/tex] units, so the area of the base [tex]\( A \)[/tex] is:

[tex]\[ \text{Base Area} = n^2 \text{ square units} \][/tex]

The height [tex]\( h \)[/tex] of the pyramid is given as [tex]\( n - 1 \)[/tex] units.

Substituting these values into the volume formula, we get:

[tex]\[ V = \frac{1}{3} \times n^2 \times (n - 1) \][/tex]

Simplifying this expression, we get:

[tex]\[ V = \frac{1}{3} n^2 (n - 1) \][/tex]

This expression [tex]\( \frac{1}{3} n^2 (n - 1) \)[/tex] represents the volume of the pyramid.

So the correct choice among the given options is:

[tex]\[ \frac{1}{3} n^2 (n - 1) \text{ units}^3 \][/tex]

This precisely represents the volume of the pyramid with a square base edge length [tex]\( n \)[/tex] and height [tex]\( n - 1 \)[/tex].