24. Compare the numbers [tex]\(-3 \frac{1}{2}\)[/tex] and [tex]\(-3 \frac{4}{5}\)[/tex]. Use the symbols [tex]\(\ \textless \ \)[/tex], [tex]\(\ \textgreater \ \)[/tex] or [tex]\(=\)[/tex].

A. [tex]\(-3 \frac{1}{2} = -3 \frac{4}{5}\)[/tex]

B. [tex]\(-3 \frac{1}{2} \ \textless \ -3 \frac{4}{5}\)[/tex]

C. [tex]\(-3 \frac{1}{2} \ \textgreater \ -3 \frac{4}{5}\)[/tex]



Answer :

To compare the numbers [tex]\(-3 \frac{1}{2}\)[/tex] and [tex]\(-3 \frac{4}{5}\)[/tex], it is helpful to first convert these mixed numbers into improper fractions or decimals.

### Converting Mixed Numbers to Decimals

1. Convert [tex]\(-3 \frac{1}{2}\)[/tex]:
[tex]\[ -3 \frac{1}{2} = -3 + (-\frac{1}{2}) = -3 - 0.5 = -3.5 \][/tex]

2. Convert [tex]\(-3 \frac{4}{5}\)[/tex]:
[tex]\[ -3 \frac{4}{5} = -3 + (-\frac{4}{5}) = -3 - 0.8 = -3.8 \][/tex]

### Comparing the Decimals

- We now have the numbers [tex]\( -3.5 \)[/tex] and [tex]\( -3.8 \)[/tex].

- To compare these two numbers, we look at their positions on the number line.

- Since both numbers are negative, the number with a greater absolute value (ignoring the negative sign) is actually smaller.

- [tex]\( -3.5 \)[/tex] is closer to zero than [tex]\( -3.8 \)[/tex].

Thus, [tex]\( -3.5 \)[/tex] is greater than [tex]\( -3.8 \)[/tex].

### Final Comparison
[tex]\[ -3 \frac{1}{2} > -3 \frac{4}{5} \][/tex]

So, the correct comparison is:
[tex]\[ -3 \frac{1}{2} > -3 \frac{4}{5} \][/tex]