Answer :
Let's compare each pair of values step by step:
1. Compare [tex]\((7 \times 100) + (6 \times 10)\)[/tex] with [tex]\((7 \times 100) + (5 \times 10) + 1\)[/tex]:
- First value: [tex]\( (7 \times 100) + (6 \times 10) = 700 + 60 = 760 \)[/tex]
- Second value: [tex]\( (7 \times 100) + (5 \times 10) + 1 = 700 + 50 + 1 = 751 \)[/tex]
- Since [tex]\(760 > 751\)[/tex], we use the symbol [tex]\(>\)[/tex].
2. Compare [tex]\((5 \times 100) + (9 \times 10) + 4\)[/tex] with [tex]\((5 \times 100) + (9 \times 10) + 2\)[/tex]:
- First value: [tex]\( (5 \times 100) + (9 \times 10) + 4 = 500 + 90 + 4 = 594 \)[/tex]
- Second value: [tex]\( (5 \times 100) + (9 \times 10) + 2 = 500 + 90 + 2 = 592 \)[/tex]
- Since [tex]\(594 > 592\)[/tex], we use the symbol [tex]\(>\)[/tex].
3. Compare [tex]\((8 \times 100) + (4 \times 10)\)[/tex] with [tex]\((6 \times 100) + (9 \times 10) + 9\)[/tex]:
- First value: [tex]\( (8 \times 100) + (4 \times 10) = 800 + 40 = 840 \)[/tex]
- Second value: [tex]\( (6 \times 100) + (9 \times 10) + 9 = 600 + 90 + 9 = 699 \)[/tex]
- Since [tex]\(840 > 699\)[/tex], we use the symbol [tex]\(>\)[/tex].
So, when we fill in the comparison symbols, we get:
[tex]\[ \begin{array}{ll} (7 \times 100)+(6 \times 10) & > (7 \times 100)+(5 \times 10)+1 \\ (5 \times 100)+(9 \times 10)+4 & > (5 \times 100)+(9 \times 10)+2 \\ (8 \times 100)+(4 \times 10) & > (6 \times 100)+(9 \times 10)+9 \end{array} \][/tex]
1. Compare [tex]\((7 \times 100) + (6 \times 10)\)[/tex] with [tex]\((7 \times 100) + (5 \times 10) + 1\)[/tex]:
- First value: [tex]\( (7 \times 100) + (6 \times 10) = 700 + 60 = 760 \)[/tex]
- Second value: [tex]\( (7 \times 100) + (5 \times 10) + 1 = 700 + 50 + 1 = 751 \)[/tex]
- Since [tex]\(760 > 751\)[/tex], we use the symbol [tex]\(>\)[/tex].
2. Compare [tex]\((5 \times 100) + (9 \times 10) + 4\)[/tex] with [tex]\((5 \times 100) + (9 \times 10) + 2\)[/tex]:
- First value: [tex]\( (5 \times 100) + (9 \times 10) + 4 = 500 + 90 + 4 = 594 \)[/tex]
- Second value: [tex]\( (5 \times 100) + (9 \times 10) + 2 = 500 + 90 + 2 = 592 \)[/tex]
- Since [tex]\(594 > 592\)[/tex], we use the symbol [tex]\(>\)[/tex].
3. Compare [tex]\((8 \times 100) + (4 \times 10)\)[/tex] with [tex]\((6 \times 100) + (9 \times 10) + 9\)[/tex]:
- First value: [tex]\( (8 \times 100) + (4 \times 10) = 800 + 40 = 840 \)[/tex]
- Second value: [tex]\( (6 \times 100) + (9 \times 10) + 9 = 600 + 90 + 9 = 699 \)[/tex]
- Since [tex]\(840 > 699\)[/tex], we use the symbol [tex]\(>\)[/tex].
So, when we fill in the comparison symbols, we get:
[tex]\[ \begin{array}{ll} (7 \times 100)+(6 \times 10) & > (7 \times 100)+(5 \times 10)+1 \\ (5 \times 100)+(9 \times 10)+4 & > (5 \times 100)+(9 \times 10)+2 \\ (8 \times 100)+(4 \times 10) & > (6 \times 100)+(9 \times 10)+9 \end{array} \][/tex]