The table represents an exponential function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 2 \\
\hline
2 & [tex]$\frac{2}{5}$[/tex] \\
\hline
3 & [tex]$\frac{2}{25}$[/tex] \\
\hline
4 & [tex]$\frac{2}{125}$[/tex] \\
\hline
\end{tabular}

What is the multiplicative rate of change of the function?

A. [tex]$\frac{1}{5}$[/tex]
B. [tex]$\frac{2}{5}$[/tex]
C. 2
D. 5



Answer :

To find the multiplicative rate of change of the given exponential function, we will analyze the ratio of consecutive [tex]\(y\)[/tex]-values at distinct [tex]\(x\)[/tex]-values. The rate of change should be constant for an exponential function.

First, let's extract the values from the table:
- When [tex]\(x = 1\)[/tex], [tex]\(y = 2\)[/tex]
- When [tex]\(x = 2\)[/tex], [tex]\(y = \frac{2}{5}\)[/tex]
- When [tex]\(x = 3\)[/tex], [tex]\(y = \frac{2}{25}\)[/tex]
- When [tex]\(x = 4\)[/tex], [tex]\(y = \frac{2}{125}\)[/tex]

Now let's determine the multiplicative rate of change by dividing each [tex]\(y\)[/tex]-value by its preceding [tex]\(y\)[/tex]-value:

1. From [tex]\(x = 1\)[/tex] to [tex]\(x = 2\)[/tex]:
[tex]\[ \text{Rate} = \frac{\frac{2}{5}}{2} = \frac{2}{5} \times \frac{1}{2} = \frac{2}{10} = 0.2 \][/tex]

2. From [tex]\(x = 2\)[/tex] to [tex]\(x = 3\)[/tex]:
[tex]\[ \text{Rate} = \frac{\frac{2}{25}}{\frac{2}{5}} = \frac{2}{25} \times \frac{5}{2} = \frac{10}{50} = 0.2 \][/tex]

3. From [tex]\(x = 3\)[/tex] to [tex]\(x = 4\)[/tex]:
[tex]\[ \text{Rate} = \frac{\frac{2}{125}}{\frac{2}{25}} = \frac{2}{125} \times \frac{25}{2} = \frac{50}{250} = 0.2 \][/tex]

Since all the calculated rates are equal, the multiplicative rate of change of the function is:
[tex]\[ 0.2 \][/tex]

This corresponds to [tex]\(\frac{1}{5}\)[/tex], because:
[tex]\[ 0.2 = \frac{1}{5} \][/tex]

Therefore, the multiplicative rate of change of the function is [tex]\(\boxed{\frac{1}{5}}\)[/tex].