Answered

Given the functions
[tex]\[ g(x) = 4 - x \quad \text{and} \quad h(x) = x^3 \][/tex]

Solve [tex]\(\operatorname{gh}(x) = 31\)[/tex].

Your final line must say, [tex]\( x = \ldots \)[/tex]



Answer :

To solve the equation [tex]\(\operatorname{gh}(x) = 31\)[/tex] where [tex]\( g(x) = 4 - x \)[/tex] and [tex]\( h(x) = x^3 \)[/tex], we need to interpret [tex]\(\operatorname{gh}(x)\)[/tex] as [tex]\(g(h(x))\)[/tex].

1. First, we compute [tex]\(h(x)\)[/tex]:
[tex]\[ h(x) = x^3 \][/tex]

2. Next, we compute [tex]\(g(h(x))\)[/tex]:
[tex]\[ g(h(x)) = g(x^3) \][/tex]

3. Substitute [tex]\(x^3\)[/tex] into the function [tex]\(g(x)\)[/tex]:
[tex]\[ g(x^3) = 4 - x^3 \][/tex]

4. Set [tex]\(g(x^3)\)[/tex] equal to 31:
[tex]\[ 4 - x^3 = 31 \][/tex]

5. Solve the equation:
[tex]\[ 4 - x^3 = 31 \][/tex]

6. Isolate [tex]\(x^3\)[/tex] by subtracting 4 from both sides:
[tex]\[ -x^3 = 31 - 4 \][/tex]
[tex]\[ -x^3 = 27 \][/tex]

7. Multiply both sides by -1 to solve for [tex]\(x^3\)[/tex]:
[tex]\[ x^3 = -27 \][/tex]

8. Take the cube root of both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \sqrt[3]{-27} \][/tex]
[tex]\[ x = -3 \][/tex]

Thus, the solution to the equation [tex]\(\operatorname{gh}(x) = 31\)[/tex] is:
[tex]\[ x = -3 \][/tex]