Which of the following shows the division problem below in synthetic division form?
[tex]\[ \frac{3x^2 - 4x + 9}{x - 2} \][/tex]

A. [tex]\(-2 \, | \, 3 \quad -4 \quad 9\)[/tex]

B. [tex]\(2 \, | \, 3 \quad -4 \quad 9\)[/tex]

C. [tex]\(-2 \, | \, 3 \quad 4 \quad 9\)[/tex]

D. [tex]\(2 \, | \, 3 \quad 4 \quad 9\)[/tex]



Answer :

To solve the synthetic division of [tex]\( \frac{3x^2 - 4x + 9}{x - 2} \)[/tex], we follow a step-by-step process.

1. Identify the coefficients from the polynomial [tex]\( 3x^2 - 4x + 9 \)[/tex]:
- The coefficients are [tex]\( 3, -4, \)[/tex] and [tex]\( 9 \)[/tex].

2. Identify the root from the divisor [tex]\( x - 2 \)[/tex]:
- The root (value of [tex]\( x \)[/tex]) is [tex]\( 2\)[/tex].

3. Set up the synthetic division:
- Write down the root ([tex]\( 2 \)[/tex]) on the left.
- List the coefficients ([tex]\( 3, -4, 9 \)[/tex]) on the right, typically separated by a bar.

The setup will look like this:
[tex]\[ 2 \mid \begin{array}{ccc} 3 & -4 & 9 \\ \end{array} \][/tex]

4. Begin the synthetic division process:
- Bring down the first coefficient (3) as it is.

[tex]\[ 2 \mid \begin{array}{ccc} 3 & -4 & 9 \\ \downarrow && \\ & 3 & \end{array} \][/tex]

5. Multiply the root (2) by the value just written below the bar (3) and place the result below the next coefficient (-4):
[tex]\[ 2 \times 3 = 6 \][/tex]
[tex]\[ 2 \mid \begin{array}{ccc} 3 & -4 & 9 \\ \downarrow & 6 & \\ & 3 & \\ \end{array} \][/tex]

6. Add this result (6) to the next coefficient (-4):
[tex]\[ -4 + 6 = 2 \][/tex]

Write 2 below the bar:
[tex]\[ 2 \mid \begin{array}{ccc} 3 & -4 & 9 \\ \downarrow & 6 & \\ & 3 & 2 \\ \end{array} \][/tex]

7. Multiply the root (2) by the new value (2) written below the bar and place the result below the next coefficient (9):
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ 2 \mid \begin{array}{ccc} 3 & -4 & 9 \\ \downarrow & 6 & 4 \\ & 3 & 2 \\ \end{array} \][/tex]

8. Add this result (4) to the next coefficient (9):
[tex]\[ 9 + 4 = 13 \][/tex]

Write 13 below the bar:
[tex]\[ 2 \mid \begin{array}{ccc} 3 & -4 & 9 \\ \downarrow & 6 & 4 \\ & 3 & 2 & 13 \\ \end{array} \][/tex]

The final row [tex]\( 3, 2, 13 \)[/tex] represents the coefficients of the quotient polynomial and the remainder. The quotient is [tex]\( 3x + 2 \)[/tex] and the remainder is 13.

Therefore, the synthetic division of [tex]\( \frac{3x^2 - 4x + 9}{x - 2} \)[/tex] yields:

[tex]\[ 3x + 2 \text{ with a remainder of } 13 \][/tex]

Based on the provided options, the correct synthetic division form is:
C. [tex]\( 2 \longdiv { 3 \quad -4 \quad 9 } \)[/tex]