Answer :
Sure, let's proceed step-by-step.
1. Write down the formula of the Accounting Equation:
[tex]\[ \boxed{\text{Assets} = \text{Owners Equity} + \text{Liabilities}} \][/tex]
2. Calculate the following missing figures:
The Accounting Equation tells us that the total assets are always equal to the sum of owners' equity and liabilities. We will use this relationship to find the missing figures.
Let's look at each row one by one:
First Row:
[tex]\[ \text{Assets} = 1200, \][/tex]
[tex]\[ \text{Owners Equity} + \text{Liabilities} = 1200, \][/tex]
[tex]\[ \text{Liabilities} = 0 \][/tex]
Given that liabilities are zero, we infer:
[tex]\[ \text{Owners Equity} = 1200 - 0 = 1200 \][/tex]
So the first row is:
[tex]\[ 1200 = 1200 + 0 \][/tex]
Second Row:
[tex]\[ \text{Assets} = ?, \][/tex]
[tex]\[ \text{Owners Equity} = -505, \][/tex]
[tex]\[ \text{Liabilities} = 0 \][/tex]
Given that liabilities are zero, the assets are:
[tex]\[ \text{Assets} = \text{Owners Equity} + \text{Liabilities} \][/tex]
[tex]\[ \text{Assets} = -505 + 0 = -505 \][/tex]
So the second row is:
[tex]\[ -505 = -505 + 0 \][/tex]
Third Row:
[tex]\[ \text{Assets} = 0, \][/tex]
[tex]\[ \text{Owners Equity} = -1300, \][/tex]
[tex]\[ \text{Liabilities} = 0 \][/tex]
So the third row is:
[tex]\[ 0 = -1300 + 0 \][/tex]
This yields the final table:
\begin{tabular}{|c|c|c|}
\hline
\text{Assets} = & \text{Owners Equity} + & \text{Liabilities} \\
\hline
1200 & 1200 & 0 \\
\hline
-505 & -505 & 0 \\
\hline
0 & -1300 & 0 \\
\hline
\end{tabular}
This completes the detailed step-by-step solution for the given problem.
1. Write down the formula of the Accounting Equation:
[tex]\[ \boxed{\text{Assets} = \text{Owners Equity} + \text{Liabilities}} \][/tex]
2. Calculate the following missing figures:
The Accounting Equation tells us that the total assets are always equal to the sum of owners' equity and liabilities. We will use this relationship to find the missing figures.
Let's look at each row one by one:
First Row:
[tex]\[ \text{Assets} = 1200, \][/tex]
[tex]\[ \text{Owners Equity} + \text{Liabilities} = 1200, \][/tex]
[tex]\[ \text{Liabilities} = 0 \][/tex]
Given that liabilities are zero, we infer:
[tex]\[ \text{Owners Equity} = 1200 - 0 = 1200 \][/tex]
So the first row is:
[tex]\[ 1200 = 1200 + 0 \][/tex]
Second Row:
[tex]\[ \text{Assets} = ?, \][/tex]
[tex]\[ \text{Owners Equity} = -505, \][/tex]
[tex]\[ \text{Liabilities} = 0 \][/tex]
Given that liabilities are zero, the assets are:
[tex]\[ \text{Assets} = \text{Owners Equity} + \text{Liabilities} \][/tex]
[tex]\[ \text{Assets} = -505 + 0 = -505 \][/tex]
So the second row is:
[tex]\[ -505 = -505 + 0 \][/tex]
Third Row:
[tex]\[ \text{Assets} = 0, \][/tex]
[tex]\[ \text{Owners Equity} = -1300, \][/tex]
[tex]\[ \text{Liabilities} = 0 \][/tex]
So the third row is:
[tex]\[ 0 = -1300 + 0 \][/tex]
This yields the final table:
\begin{tabular}{|c|c|c|}
\hline
\text{Assets} = & \text{Owners Equity} + & \text{Liabilities} \\
\hline
1200 & 1200 & 0 \\
\hline
-505 & -505 & 0 \\
\hline
0 & -1300 & 0 \\
\hline
\end{tabular}
This completes the detailed step-by-step solution for the given problem.