Solve for [tex]$x$[/tex].

[tex]\[ 735 = \left(x^2 + x + 111\right)^{\frac{6}{5}} + 6 \][/tex]

Write one solution in each box. You can add or remove boxes. If there are no solutions, remove all boxes.
[tex]\[\square\][/tex]



Answer :

To solve the equation [tex]\( 735 = \left(x^2 + x + 111\right)^{\frac{6}{5}} + 6 \)[/tex]:

Step 1: Isolate the term involving [tex]\(x\)[/tex].

[tex]\[ 735 - 6 = \left(x^2 + x + 111\right)^{\frac{6}{5}} \][/tex]

Simplifying the left-hand side:

[tex]\[ 729 = \left(x^2 + x + 111\right)^{\frac{6}{5}} \][/tex]

Step 2: Remove the exponent by raising both sides to the reciprocal power of [tex]\(\frac{6}{5}\)[/tex]:

[tex]\[ 729^{\frac{5}{6}} = x^2 + x + 111 \][/tex]

Step 3: Calculate [tex]\(729^{\frac{5}{6}}\)[/tex].

[tex]\[ 729 = 3^6 \quad \text{so} \quad 729^{\frac{5}{6}} = (3^6)^{\frac{5}{6}} = 3^5 = 243 \][/tex]

Thus,

[tex]\[ 243 = x^2 + x + 111 \][/tex]

Step 4: Form a quadratic equation:

[tex]\[ x^2 + x + 111 = 243 \][/tex]

Subtract 243 from both sides:

[tex]\[ x^2 + x + 111 - 243 = 0 \][/tex]

Simplifying:

[tex]\[ x^2 + x - 132 = 0 \][/tex]

Step 5: Solve the quadratic equation [tex]\(x^2 + x - 132 = 0\)[/tex].

We use the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -132\)[/tex].

[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-132)}}{2 \cdot 1} \][/tex]

[tex]\[ x = \frac{-1 \pm \sqrt{1 + 528}}{2} \][/tex]

[tex]\[ x = \frac{-1 \pm \sqrt{529}}{2} \][/tex]

[tex]\[ x = \frac{-1 \pm 23}{2} \][/tex]

This results in two solutions:

1. [tex]\(x = \frac{-1 + 23}{2} = \frac{22}{2} = 11\)[/tex]
2. [tex]\(x = \frac{-1 - 23}{2} = \frac{-24}{2} = -12\)[/tex]

Thus, the solutions for [tex]\(x\)[/tex] are:

[tex]\[ \boxed{11} \][/tex]

[tex]\[ \boxed{-12} \][/tex]