What is the wavelength of waves that have a frequency of [tex]2.20 \times 10^{-4} \, \text{Hz}[/tex]?

A. [tex]7.30 \times 10^{-13} \, \text{m}[/tex]

B. [tex]6.60 \times 10^{4} \, \text{m}[/tex]

C. [tex]5.50 \times 10^{8} \, \text{m}[/tex]

D. [tex]1.36 \times 10^{12} \, \text{m}[/tex]



Answer :

To find the wavelength of waves with a given frequency, we can use the formula:

[tex]\[ \text{wavelength} = \frac{\text{speed of light}}{\text{frequency}} \][/tex]

The speed of light ([tex]\( c \)[/tex]) is approximately [tex]\( 3.00 \times 10^8 \)[/tex] meters per second (m/s).

The given frequency ([tex]\( f \)[/tex]) is [tex]\( 2.20 \times 10^{-4} \)[/tex] hertz (Hz).

So, substituting the given values into the formula, we get:

[tex]\[ \text{wavelength} = \frac{3.00 \times 10^8 \, \text{m/s}}{2.20 \times 10^{-4} \, \text{Hz}} \][/tex]

Calculating this, we find:

[tex]\[ \text{wavelength} \approx 1363636363636.3635 \, \text{m} \][/tex]

Thus, the wavelength of the waves with a frequency of [tex]\( 2.20 \times 10^{-4} \)[/tex] Hz is approximately:

[tex]\[ 1.36 \times 10^{12} \, \text{m} \][/tex]

Therefore, the correct answer is:

[tex]\[ 1.36 \times 10^{12} \, \text{m} \][/tex]

Other Questions