Answer :
To find the wavelength of waves with a given frequency, we can use the formula:
[tex]\[ \text{wavelength} = \frac{\text{speed of light}}{\text{frequency}} \][/tex]
The speed of light ([tex]\( c \)[/tex]) is approximately [tex]\( 3.00 \times 10^8 \)[/tex] meters per second (m/s).
The given frequency ([tex]\( f \)[/tex]) is [tex]\( 2.20 \times 10^{-4} \)[/tex] hertz (Hz).
So, substituting the given values into the formula, we get:
[tex]\[ \text{wavelength} = \frac{3.00 \times 10^8 \, \text{m/s}}{2.20 \times 10^{-4} \, \text{Hz}} \][/tex]
Calculating this, we find:
[tex]\[ \text{wavelength} \approx 1363636363636.3635 \, \text{m} \][/tex]
Thus, the wavelength of the waves with a frequency of [tex]\( 2.20 \times 10^{-4} \)[/tex] Hz is approximately:
[tex]\[ 1.36 \times 10^{12} \, \text{m} \][/tex]
Therefore, the correct answer is:
[tex]\[ 1.36 \times 10^{12} \, \text{m} \][/tex]
[tex]\[ \text{wavelength} = \frac{\text{speed of light}}{\text{frequency}} \][/tex]
The speed of light ([tex]\( c \)[/tex]) is approximately [tex]\( 3.00 \times 10^8 \)[/tex] meters per second (m/s).
The given frequency ([tex]\( f \)[/tex]) is [tex]\( 2.20 \times 10^{-4} \)[/tex] hertz (Hz).
So, substituting the given values into the formula, we get:
[tex]\[ \text{wavelength} = \frac{3.00 \times 10^8 \, \text{m/s}}{2.20 \times 10^{-4} \, \text{Hz}} \][/tex]
Calculating this, we find:
[tex]\[ \text{wavelength} \approx 1363636363636.3635 \, \text{m} \][/tex]
Thus, the wavelength of the waves with a frequency of [tex]\( 2.20 \times 10^{-4} \)[/tex] Hz is approximately:
[tex]\[ 1.36 \times 10^{12} \, \text{m} \][/tex]
Therefore, the correct answer is:
[tex]\[ 1.36 \times 10^{12} \, \text{m} \][/tex]