Simplify [tex]4x\sqrt{3x} - x\sqrt{3x} - 2x\sqrt{3x}[/tex].

A. [tex]x\sqrt{3x}[/tex]
B. [tex]x\sqrt{9x}[/tex]
C. [tex]2x\sqrt{6x}[/tex]
D. [tex]2x\sqrt{6x^3}[/tex]



Answer :

To simplify the expression [tex]\(4x\sqrt{3x} - x\sqrt{3x} - 2x\sqrt{3x}\)[/tex], follow these steps:

1. Identify Like Terms: Notice that each term in the expression contains [tex]\(x\sqrt{3x}\)[/tex]:
[tex]\[ 4x\sqrt{3x}, \quad x\sqrt{3x}, \quad \text{and} \quad 2x\sqrt{3x} \][/tex]

2. Combine Like Terms: We can factor out the common term [tex]\(x\sqrt{3x}\)[/tex] from each term:
[tex]\[ 4x\sqrt{3x} - x\sqrt{3x} - 2x\sqrt{3x} = (4 - 1 - 2)x\sqrt{3x} \][/tex]

3. Simplify Coefficients: Combine the numerical coefficients:
[tex]\[ 4 - 1 - 2 = 1 \][/tex]

4. Express the Simplified Form: After combining the coefficients, we get:
[tex]\[ 1x\sqrt{3x} \][/tex]

Since multiplying by 1 does not change the expression, we can simplify it to:
[tex]\[ x\sqrt{3x} \][/tex]

Thus, the simplified form of [tex]\(4x\sqrt{3x} - x\sqrt{3x} - 2x\sqrt{3x}\)[/tex] is:
[tex]\[ x\sqrt{3x} \][/tex]