Which table represents a linear function?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & [tex]$\frac{1}{2}$[/tex] \\
\hline
2 & 1 \\
\hline
3 & [tex]$1 \frac{1}{2}$[/tex] \\
\hline
4 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 1 \\
\hline
2 & [tex]$\frac{1}{2}$[/tex] \\
\hline
3 & [tex]$\frac{1}{3}$[/tex] \\
\hline
4 & [tex]$\frac{1}{4}$[/tex] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 7 \\
\hline
2 & 9 \\
\hline
3 & 13 \\
\hline
4 & 21 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 0 \\
\hline
2 & 6 \\
\hline
3 & 16 \\
\hline
4 & 30 \\
\hline
\end{tabular}



Answer :

To determine which table represents a linear function, we need to examine each table and check if the rate of change (or the slope) between the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values is constant. A function is linear if there is a constant difference in [tex]\(y\)[/tex] values when [tex]\(x\)[/tex] values increase by a constant amount.

### Analyzing Each Table

Table 1: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1 \frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]

Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(1 - \frac{1}{2} = \frac{1}{2}\)[/tex], [tex]\(1 \frac{1}{2} - 1 = \frac{1}{2}\)[/tex], [tex]\(2 - 1 \frac{1}{2} = \frac{1}{2}\)[/tex]

The differences (ratios) are consistent ([tex]\(\frac{1}{2}/1 = \frac{1}{2}\)[/tex]), so this table represents a linear function.

Table 2: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]

Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(\frac{1}{2} - 1 = -\frac{1}{2}\)[/tex], [tex]\(\frac{1}{3} - \frac{1}{2} = -\frac{1}{6}\)[/tex], [tex]\(\frac{1}{4} - \frac{1}{3} = -\frac{1}{12}\)[/tex]

The differences are not consistent, so this table does not represent a linear function.

Table 3: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]

Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(9 - 7 = 2\)[/tex], [tex]\(13 - 9 = 4\)[/tex], [tex]\(21 - 13 = 8\)[/tex]

The differences are not consistent, so this table does not represent a linear function.

Table 4: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]

Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(6 - 0 = 6\)[/tex], [tex]\(16 - 6 = 10\)[/tex], [tex]\(30 - 16 = 14\)[/tex]

The differences are not consistent, so this table does not represent a linear function.

### Conclusion

Based on the examination above, only the first table represents a linear function.