Rewrite the radical expression as an expression with rational exponents.

[tex]\[ \sqrt[3]{x^8} \][/tex]

A. [tex]\( x^{\frac{3}{8}} \)[/tex]
B. [tex]\( x^{\frac{8}{3}} \)[/tex]
C. [tex]\( 8 x^3 \)[/tex]
D. [tex]\( 3 x^8 \)[/tex]



Answer :

Sure, let's rewrite the given radical expression [tex]\(\sqrt[3]{x^8}\)[/tex] as an expression with rational exponents step by step.

1. Understand the Radical Expression:
The given expression is the cube root of [tex]\(x^8\)[/tex], which we denote as [tex]\(\sqrt[3]{x^8}\)[/tex].

2. Rewrite the Radical as an Exponent:
The cube root of a number can be expressed as raising that number to the power of [tex]\(\frac{1}{3}\)[/tex]. Thus, [tex]\(\sqrt[3]{x^8}\)[/tex] can be written as:
[tex]\[ (x^8)^{\frac{1}{3}} \][/tex]

3. Apply the Power of a Power Property:
To simplify [tex]\((x^8)^{\frac{1}{3}}\)[/tex], we use the power of a power property for exponents, which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Here, [tex]\(a = x\)[/tex], [tex]\(m = 8\)[/tex], and [tex]\(n = \frac{1}{3}\)[/tex]. So, we get:
[tex]\[ x^{8 \cdot \frac{1}{3}} \][/tex]

4. Simplify the Exponent:
Multiply the exponents [tex]\(8\)[/tex] and [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ 8 \cdot \frac{1}{3} = \frac{8}{3} \][/tex]

5. Write the Final Expression:
Therefore, the expression [tex]\((x^8)^{\frac{1}{3}}\)[/tex] simplifies to:
[tex]\[ x^{\frac{8}{3}} \][/tex]

So, the correct option is [tex]\(x^{\frac{8}{3}}\)[/tex].