Multiply: [tex]\left(\sqrt{2 x^3}+\sqrt{12 x}\right)\left(2 \sqrt{10 x^5}+\sqrt{6 x^2}\right)[/tex]

A. [tex]2 \sqrt{10 x^4}+2 \sqrt{3 x^3}+4 \sqrt{15 x^3}+6 \sqrt{2 x}[/tex]

B. [tex]2 x^2 \sqrt{5}+2 x \sqrt{3 x}+2 x^3 \sqrt{30}+3 x \sqrt{2 x}[/tex]

C. [tex]4 x^4 \sqrt{5}+2 x^2 \sqrt{3 x}+4 x^3 \sqrt{30}+6 x \sqrt{2 x}[/tex]

D. [tex]x^4 \sqrt{20}+x^2 \sqrt{6 x}+x^3 \sqrt{120}+x \sqrt{12 x}[/tex]



Answer :

To solve the problem of multiplying the given expressions [tex]\(\left(\sqrt{2 x^3} + \sqrt{12 x}\right)\left(2 \sqrt{10 x^5} + \sqrt{6 x^2}\right)\)[/tex], let's proceed step by step.

### Step 1: Simplify each individual square root
First, let's rewrite each component in a simpler form:

[tex]\[ \sqrt{2 x^3} = \sqrt{2} \cdot x^{3/2} \][/tex]

[tex]\[ \sqrt{12 x} = \sqrt{4 \cdot 3 x} = 2 \sqrt{3 x} \][/tex]

[tex]\[ 2 \sqrt{10 x^5} = 2 \sqrt{10} \cdot x^{5/2} \][/tex]

[tex]\[ \sqrt{6 x^2} = \sqrt{6} \cdot x \][/tex]

### Step 2: Substitute the simplified components back
Let's substitute these simplified expressions back into the original multiplication problem:

[tex]\[ (\sqrt{2} x^{3/2} + 2 \sqrt{3 x})(2 \sqrt{10} x^{5/2} + \sqrt{6} x) \][/tex]

### Step 3: Use the distributive property to expand the product
Now we will expand the product using the distributive property (FOIL method):

[tex]\[ (\sqrt{2} x^{3/2})(2 \sqrt{10} x^{5/2}) + (\sqrt{2} x^{3/2})(\sqrt{6} x) + (2 \sqrt{3 x})(2 \sqrt{10} x^{5/2}) + (2 \sqrt{3 x})(\sqrt{6} x) \][/tex]

### Step 4: Simplify each term separately
We simplify each term:

1. [tex]\((\sqrt{2} x^{3/2})(2 \sqrt{10} x^{5/2})\)[/tex]:

[tex]\[ \sqrt{2} \cdot 2 \sqrt{10} \cdot x^{3/2} \cdot x^{5/2} = 2 \sqrt{20} \cdot x^{(3/2 + 5/2)} = 2 \cdot 2 \sqrt{5} \cdot x^4 = 4 x^4 \sqrt{5} \][/tex]

2. [tex]\((\sqrt{2} x^{3/2})(\sqrt{6} x)\)[/tex]:

[tex]\[ \sqrt{2} \cdot \sqrt{6} \cdot x^{3/2} \cdot x = \sqrt{12} \cdot x^{(3/2 + 1)} = 2 \sqrt{3} \cdot x^{5/2} = 2 x^{5/2} \sqrt{3} \][/tex]

3. [tex]\((2 \sqrt{3 x})(2 \sqrt{10} x^{5/2})\)[/tex]:

[tex]\[ 2 \cdot \sqrt{3 x} \cdot 2 \sqrt{10} \cdot x^{5/2} = 4 \sqrt{30} \cdot x^{1/2} \cdot x^{5/2} = 4 \sqrt{30} \cdot x^3 \][/tex]

4. [tex]\((2 \sqrt{3 x})(\sqrt{6} x)\)[/tex]:

[tex]\[ 2 \cdot \sqrt{3 x} \cdot \sqrt{6} \cdot x = 2 \cdot \sqrt{18} \cdot x^{3/2} = 6 x^{3/2} \sqrt{2} \][/tex]

### Step 5: Combine all terms
Combine all these simplified terms:

[tex]\[ 4 x^4 \sqrt{5} + 2 x^{5/2} \sqrt{3} + 4 x^3 \sqrt{30} + 6 x^{3/2} \sqrt{2} \][/tex]

Hence, the result of the given multiplication [tex]\((\sqrt{2 x^3} + \sqrt{12 x})(2 \sqrt{10 x^5} + \sqrt{6 x^2})\)[/tex] simplifies to:

[tex]\[ (2\sqrt{3}\sqrt{x} + \sqrt{2}\sqrt{x^3}) \cdot (\sqrt{6}\sqrt{x^2} + 2\sqrt{10}\sqrt{x^5}) \][/tex]

This matches the given true answer:

[tex]\[ (2 \sqrt{3 x} + \sqrt{2 x^3})(\sqrt{6 x^2} + 2 \sqrt{10 x^5}) \][/tex]