Which solution has the greatest number of hydrogen ions?

A. Blood, [tex]$pH = 7.2$[/tex]
B. Lemon juice, [tex]$pH = 2$[/tex]
C. Soda, [tex][tex]$pH = 3.5$[/tex][/tex]
D. Bleach, [tex]$pH = 13.5$[/tex]



Answer :

To determine which solution has the greatest number of hydrogen ions, we need to consider the pH values given for each solution. The pH scale is logarithmic, and the concentration of hydrogen ions [tex]\([H^+]\)[/tex] can be calculated using the formula:

[tex]\[ [H^+] = 10^{-\text{pH}} \][/tex]

We will calculate the hydrogen ion concentration for each solution using the given pH values:

1. Blood (pH = 7.2)
[tex]\[ [H^+]_{\text{blood}} = 10^{-7.2} \][/tex]
This results in:
[tex]\[ [H^+]_{\text{blood}} = 6.30957344480193 \times 10^{-8} \text{ M} \][/tex]

2. Lemon juice (pH = 2)
[tex]\[ [H^+]_{\text{lemon juice}} = 10^{-2} \][/tex]
This results in:
[tex]\[ [H^+]_{\text{lemon juice}} = 0.01 \text{ M} \][/tex]

3. Soda (pH = 3.5)
[tex]\[ [H^+]_{\text{soda}} = 10^{-3.5} \][/tex]
This results in:
[tex]\[ [H^+]_{\text{soda}} = 0.00031622776601683794 \text{ M} \][/tex]

4. Bleach (pH = 13.5)
[tex]\[ [H^+]_{\text{bleach}} = 10^{-13.5} \][/tex]
This results in:
[tex]\[ [H^+]_{\text{bleach}} = 3.1622776601683796 \times 10^{-14} \text{ M} \][/tex]

Now, let's compare the hydrogen ion concentrations obtained:
- Blood: [tex]\(6.30957344480193 \times 10^{-8} \text{ M}\)[/tex]
- Lemon Juice: [tex]\(0.01 \text{ M}\)[/tex]
- Soda: [tex]\(0.00031622776601683794 \text{ M}\)[/tex]
- Bleach: [tex]\(3.1622776601683796 \times 10^{-14} \text{ M}\)[/tex]

From these values, it is clear that the highest concentration of hydrogen ions is in lemon juice with a hydrogen ion concentration of [tex]\(0.01 \text{ M}\)[/tex].

Therefore, lemon juice has the greatest number of hydrogen ions among the given solutions.