Solve the equation [tex]\frac{1}{4}(16+12x)=28[/tex] by first using the distributive property.

The equivalent equation is found by distributing the [tex]\frac{1}{4}[/tex] to get:
1. The first step is [tex]\square[/tex]
2. The second step is [tex]\square[/tex]
3. The answer is [tex]\square[/tex]

Choices:
A. [tex]4 + 12x = 28[/tex]
B. [tex]4 + 3x = 7[/tex]
C. [tex]4 + 3x = 28[/tex]
D. [tex]16 + 3x = 28[/tex]



Answer :

To solve the equation [tex]\(\frac{1}{4}(16+12x)=28\)[/tex], we will use the distributive property first.

The equivalent equation is found by distributing the [tex]\(\frac{1}{4}\)[/tex] to get:
[tex]\[ \frac{1}{4} \cdot 16 + \frac{1}{4} \cdot 12x \][/tex]
This simplifies to:
[tex]\[ 4 + 3x \][/tex]

The first step is:
[tex]\[ 4 + 3x = 28 \][/tex]

The second step is to isolate [tex]\(x\)[/tex]. We do this by subtracting 4 from both sides:
[tex]\[ 4 + 3x - 4 = 28 - 4 \][/tex]
This simplifies to:
[tex]\[ 3x = 24 \][/tex]

Next, we divide both sides by 3 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{24}{3} \][/tex]
This simplifies to:
[tex]\[ x = 8 \][/tex]

So, the detailed steps are:
1. [tex]\(\frac{1}{4}(16+12x)=28\)[/tex]
2. Distribute the [tex]\(\frac{1}{4}\)[/tex] to get: [tex]\(4+3x=28\)[/tex]
3. Subtract 4 from both sides: [tex]\(3x=24\)[/tex]
4. Divide by 3 to solve for [tex]\(x\)[/tex]: [tex]\(x=8\)[/tex]

The answer is:
[tex]\[ x = 8 \][/tex]