When we reflect a point over the [tex]\(x\)[/tex]-axis, the [tex]\(x\)[/tex]-coordinate remains the same, while the [tex]\(y\)[/tex]-coordinate changes its sign. Let's apply this property step-by-step to the given point [tex]\((-3, 6)\)[/tex].
1. Start with the original coordinates of the point: [tex]\((-3, 6)\)[/tex].
2. The [tex]\(x\)[/tex]-coordinate remains unchanged, therefore it stays [tex]\(-3\)[/tex].
3. Change the sign of the [tex]\(y\)[/tex]-coordinate: the original [tex]\(y\)[/tex]-coordinate is [tex]\(6\)[/tex], so the new [tex]\(y\)[/tex]-coordinate will be [tex]\(-6\)[/tex].
Therefore, the image of the point [tex]\((-3, 6)\)[/tex] when reflected over the [tex]\(x\)[/tex]-axis is [tex]\((-3, -6)\)[/tex].
Thus, the correct answer is:
D. [tex]\((-3, -6)\)[/tex]