What is the image of [tex]$(-3,6)$[/tex] when reflected in the [tex]$x$[/tex]-axis?

A. [tex]$(3,-6)$[/tex]
B. [tex]$(6,-3)$[/tex]
C. [tex]$(3,6)$[/tex]
D. [tex]$(-3,-6)$[/tex]



Answer :

When we reflect a point over the [tex]\(x\)[/tex]-axis, the [tex]\(x\)[/tex]-coordinate remains the same, while the [tex]\(y\)[/tex]-coordinate changes its sign. Let's apply this property step-by-step to the given point [tex]\((-3, 6)\)[/tex].

1. Start with the original coordinates of the point: [tex]\((-3, 6)\)[/tex].

2. The [tex]\(x\)[/tex]-coordinate remains unchanged, therefore it stays [tex]\(-3\)[/tex].

3. Change the sign of the [tex]\(y\)[/tex]-coordinate: the original [tex]\(y\)[/tex]-coordinate is [tex]\(6\)[/tex], so the new [tex]\(y\)[/tex]-coordinate will be [tex]\(-6\)[/tex].

Therefore, the image of the point [tex]\((-3, 6)\)[/tex] when reflected over the [tex]\(x\)[/tex]-axis is [tex]\((-3, -6)\)[/tex].

Thus, the correct answer is:
D. [tex]\((-3, -6)\)[/tex]