Which equations are equivalent to [tex]-\frac{1}{4}(x) + \frac{3}{4} = 12[/tex]? Select all that apply.

A. [tex]\left(\frac{-4x}{1}\right) + \frac{3}{4} = 12[/tex]
B. [tex]-1\left(\frac{x}{4}\right) + \frac{3}{4} = 12[/tex]
C. [tex]\frac{-x + 3}{4} = 12[/tex]
D. [tex]\frac{1}{4}(x + 3) = 12[/tex]
E. [tex]\left(\frac{-x}{4}\right) + \frac{3}{4} = 12[/tex]



Answer :

To find which equations are equivalent to [tex]\(-\frac{1}{4}x + \frac{3}{4} = 12\)[/tex], we need to simplify and compare each provided option step by step.

### Option 1: [tex]\(\left(\frac{-4 x}{1}\right)+\frac{3}{4}=12\)[/tex]

Simplifying:
[tex]\[ -4x + \frac{3}{4} = 12 \][/tex]

This is not equivalent to the original equation because the coefficient of [tex]\(x\)[/tex] is [tex]\(-4\)[/tex] instead of [tex]\(-\frac{1}{4}\)[/tex].

### Option 2: [tex]\(-1 \left(\frac{x}{4}\right)+\frac{3}{4}=12\)[/tex]

Simplifying:
[tex]\[ -\frac{x}{4} + \frac{3}{4} = 12 \][/tex]

This is equivalent to [tex]\(-\frac{1}{4}x + \frac{3}{4} = 12\)[/tex].

So, this option is equivalent to the original equation.

### Option 3: [tex]\(\frac{-x+3}{4}=12\)[/tex]

Simplifying by multiplying both sides by [tex]\(4\)[/tex]:
[tex]\[ -x + 3 = 48 \][/tex]

This does not match the original equation ([tex]\(-\frac{1}{4}x + \frac{3}{4} = 12\)[/tex]) as the constants and coefficients do not match directly.

### Option 4: [tex]\(\frac{1}{4}(x+3)=12\)[/tex]

Simplifying by multiplying both sides by [tex]\(4\)[/tex]:
[tex]\[ x + 3 = 48 \][/tex]

This also does not match the original equation as the structure and coefficients do not align.

### Option 5: [tex]\(\left(\frac{-x}{4}\right)+\frac{3}{4}=12\)[/tex]

Simplifying:
[tex]\[ -\frac{x}{4} + \frac{3}{4} = 12 \][/tex]

This is equivalent to [tex]\(-\frac{1}{4}x + \frac{3}{4} = 12\)[/tex].

So, this option is equivalent to the original equation.

### Conclusion
The equations that are equivalent to [tex]\(-\frac{1}{4}x + \frac{3}{4} = 12\)[/tex] are:

Option 2: [tex]\(-1 \left(\frac{x}{4}\right) + \frac{3}{4} = 12\)[/tex]

Option 5: [tex]\(\left(\frac{-x}{4}\right) + \frac{3}{4} = 12\)[/tex]

Hence, the final result is:

[tex]\[ \boxed{2, 5} \][/tex]