Answer :
Certainly! Let's break down the problem step by step to find the given mathematical expression's result.
We start with the expression:
[tex]\[ \frac{\partial \partial}{\partial 6} \times \frac{100}{1} \][/tex]
Here, the term [tex]\(\frac{100}{1}\)[/tex] simplifies to 100. So we can rewrite the expression as:
[tex]\[ \frac{\partial \partial}{\partial 6} \times 100 \][/tex]
The term [tex]\(\frac{\partial \partial}{\partial 6}\)[/tex] seems unconventional in pure mathematical notation. However, for this context and clarity in tracing the steps, let's assume it represents some fraction involving the factor 6. To interpret this, we will treat it as [tex]\(\frac{1}{6}\)[/tex].
Therefore, the expression can be written as:
[tex]\[ \frac{1}{6} \times 100 \][/tex]
Now, multiplying these fractions together:
[tex]\[ \frac{1}{6} \times 100 = \frac{100}{6} \][/tex]
The fraction [tex]\(\frac{100}{6}\)[/tex] simplifies to approximately:
[tex]\[ 16.666666666666664 \][/tex]
So, the resulting value for the expression [tex]\(\frac{\partial \partial}{\partial 6} \times \frac{100}{1}\)[/tex] is:
[tex]\[ 16.666666666666664 \][/tex]
We start with the expression:
[tex]\[ \frac{\partial \partial}{\partial 6} \times \frac{100}{1} \][/tex]
Here, the term [tex]\(\frac{100}{1}\)[/tex] simplifies to 100. So we can rewrite the expression as:
[tex]\[ \frac{\partial \partial}{\partial 6} \times 100 \][/tex]
The term [tex]\(\frac{\partial \partial}{\partial 6}\)[/tex] seems unconventional in pure mathematical notation. However, for this context and clarity in tracing the steps, let's assume it represents some fraction involving the factor 6. To interpret this, we will treat it as [tex]\(\frac{1}{6}\)[/tex].
Therefore, the expression can be written as:
[tex]\[ \frac{1}{6} \times 100 \][/tex]
Now, multiplying these fractions together:
[tex]\[ \frac{1}{6} \times 100 = \frac{100}{6} \][/tex]
The fraction [tex]\(\frac{100}{6}\)[/tex] simplifies to approximately:
[tex]\[ 16.666666666666664 \][/tex]
So, the resulting value for the expression [tex]\(\frac{\partial \partial}{\partial 6} \times \frac{100}{1}\)[/tex] is:
[tex]\[ 16.666666666666664 \][/tex]