Drag the tiles to the correct boxes. Not all tiles will be used.

Determine a correct sequence of row operations to change the matrix

[tex]\[
\left[\begin{array}{ccc}
5 & 1 & 2 \\
2 & -2 & 6 \\
7 & 0 & 1
\end{array}\right]
\][/tex]

to the matrix

[tex]\[
\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 6 & -13 \\
7 & 0 & 1
\end{array}\right]
\][/tex].

Tiles:
- [tex]$\frac{1}{2} R_2$[/tex]
- [tex]$-5 R_2 + R_1$[/tex] replaces [tex]$R_1$[/tex]
- switch [tex]$R_2$[/tex] and [tex]$R_1$[/tex]
- [tex]$3 R_1$[/tex]
- [tex]$-3 R_2 + R_3$[/tex] replaces [tex]$R_3$[/tex]

[tex]$\square$[/tex]
[tex]$\square$[/tex]
[tex]$\square$[/tex]



Answer :

To transform the matrix [tex]\(\left[\begin{array}{ccc}5 & 1 & 2 \\ 2 & -2 & 6 \\ 7 & 0 & 1 \end{array}\right]\)[/tex] into the matrix [tex]\(\left[\begin{array}{ccc}1 & -1 & 3 \\ 0 & 6 & -13 \\ 7 & 0 & 1 \end{array}\right]\)[/tex], we can follow these row operations:

1. Multiply [tex]\( R_2 \)[/tex] by [tex]\(\frac{1}{2}\)[/tex] to get [1, -1, 3] in the second row.
2. Replace [tex]\( R_1 \)[/tex] with [tex]\(-5 R_2 + R_1\)[/tex].
3. No further row operations are necessary to achieve the desired matrix format.

This sequence of operations can be represented as:
- [tex]\(\frac{1}{2} R_2\)[/tex]
- [tex]\(-5 R_2 + R_1\)[/tex] replaces [tex]\(R_1\)[/tex]

The correct choices to fill the boxes would be:

[tex]\[ \begin{array}{|c|} \hline \frac{1}{2} R_2 \\ \hline -5 R_2 + R_1\; replaces R_1 \\ \hline \square\\ \hline \end{array} \][/tex]

Note:

The operation 'switch [tex]\(R_2\)[/tex] and [tex]\(R_1\)[/tex]' is not part of the sequence and thus not needed.