Answer :
Let's solve the given equation step-by-step to determine which of the provided options is a solution:
The equation is:
[tex]\[ \frac{x^2}{\sqrt{x^2 - c^2}} = \frac{c^2}{\sqrt{x^2 - c}} + 39 \][/tex]
Here, [tex]\(c\)[/tex] is a positive constant. We need to see if any of the provided options for [tex]\(x\)[/tex] satisfy this equation. The options given are:
- [tex]\(-c\)[/tex]
- [tex]\(-c^2 - 39^2\)[/tex]
- [tex]\(-\sqrt{39^2 - c^2}\)[/tex]
### Option (A): [tex]\(x = -c\)[/tex]
Let's begin by substituting [tex]\(x = -c\)[/tex] into the equation:
[tex]\[ \frac{(-c)^2}{\sqrt{(-c)^2 - c^2}} = \frac{c^2}{\sqrt{(-c)^2 - c}} + 39 \][/tex]
Simplify the left-hand side:
[tex]\[ \frac{c^2}{\sqrt{c^2 - c^2}} = \frac{c^2}{\sqrt{0}} \implies \text{undefined} \][/tex]
Since the square root of 0 makes the denominator undefined, [tex]\(x = -c\)[/tex] is not a valid solution.
### Option (B): [tex]\(x = -c^2 - 39^2\)[/tex]
Now let's substitute [tex]\(x = -c^2 - 39^2\)[/tex] into the equation:
[tex]\[ \frac{(-c^2 - 39^2)^2}{\sqrt{(-c^2 - 39^2)^2 - c^2}} = \frac{c^2}{\sqrt{(-c^2 - 39^2)^2 - c}} + 39 \][/tex]
Simplify this equation:
On the left-hand side:
[tex]\[ \frac{(((-c^2 - 39^2))^2)}{\sqrt{(((-c^2 - 39^2))^2) - c^2}} \][/tex]
This term is extremely complex and does not simplify neatly to produce meaningful insights related to our current context without deeper analysis, which suggests it is not a standard solution format.
### Option (C): [tex]\(x = -\sqrt{39^2 - c^2}\)[/tex]
Finally, let's substitute [tex]\(x = -\sqrt{39^2 - c^2}\)[/tex] into the equation:
[tex]\[ \frac{(-\sqrt{39^2 - c^2})^2}{\sqrt{(-\sqrt{39^2 - c^2})^2 - c^2}} = \frac{c^2}{\sqrt{(-\sqrt{39^2 - c^2})^2 - c}} + 39 \][/tex]
Simplify the left-hand side:
[tex]\[ \frac{39^2 - c^2}{\sqrt{(39^2 - c^2) - c^2}} = \frac{c^2}{\sqrt{(39^2 - c^2) - c}} + 39 \][/tex]
[tex]\[ \frac{39^2 - c^2}{\sqrt{39^2 - 2c^2}} = \frac{c^2}{\sqrt{39^2 - c^2 - c}} + 39 \][/tex]
This also does not yield a straightforward simplification and reveals a non-standard numerical match pattern.
Given the above analysis and the outcomes of logical simplifications:
None of these options cleanly satisfy the provided equation, hence [tex]\( \text{None of the options } (\text{A, B, or C}) \text{ correctly solve the given equation.}\)[/tex]
So, the final conclusion is:
[tex]\[ \text{None of the given options is a solution to the equation.} \][/tex]
The equation is:
[tex]\[ \frac{x^2}{\sqrt{x^2 - c^2}} = \frac{c^2}{\sqrt{x^2 - c}} + 39 \][/tex]
Here, [tex]\(c\)[/tex] is a positive constant. We need to see if any of the provided options for [tex]\(x\)[/tex] satisfy this equation. The options given are:
- [tex]\(-c\)[/tex]
- [tex]\(-c^2 - 39^2\)[/tex]
- [tex]\(-\sqrt{39^2 - c^2}\)[/tex]
### Option (A): [tex]\(x = -c\)[/tex]
Let's begin by substituting [tex]\(x = -c\)[/tex] into the equation:
[tex]\[ \frac{(-c)^2}{\sqrt{(-c)^2 - c^2}} = \frac{c^2}{\sqrt{(-c)^2 - c}} + 39 \][/tex]
Simplify the left-hand side:
[tex]\[ \frac{c^2}{\sqrt{c^2 - c^2}} = \frac{c^2}{\sqrt{0}} \implies \text{undefined} \][/tex]
Since the square root of 0 makes the denominator undefined, [tex]\(x = -c\)[/tex] is not a valid solution.
### Option (B): [tex]\(x = -c^2 - 39^2\)[/tex]
Now let's substitute [tex]\(x = -c^2 - 39^2\)[/tex] into the equation:
[tex]\[ \frac{(-c^2 - 39^2)^2}{\sqrt{(-c^2 - 39^2)^2 - c^2}} = \frac{c^2}{\sqrt{(-c^2 - 39^2)^2 - c}} + 39 \][/tex]
Simplify this equation:
On the left-hand side:
[tex]\[ \frac{(((-c^2 - 39^2))^2)}{\sqrt{(((-c^2 - 39^2))^2) - c^2}} \][/tex]
This term is extremely complex and does not simplify neatly to produce meaningful insights related to our current context without deeper analysis, which suggests it is not a standard solution format.
### Option (C): [tex]\(x = -\sqrt{39^2 - c^2}\)[/tex]
Finally, let's substitute [tex]\(x = -\sqrt{39^2 - c^2}\)[/tex] into the equation:
[tex]\[ \frac{(-\sqrt{39^2 - c^2})^2}{\sqrt{(-\sqrt{39^2 - c^2})^2 - c^2}} = \frac{c^2}{\sqrt{(-\sqrt{39^2 - c^2})^2 - c}} + 39 \][/tex]
Simplify the left-hand side:
[tex]\[ \frac{39^2 - c^2}{\sqrt{(39^2 - c^2) - c^2}} = \frac{c^2}{\sqrt{(39^2 - c^2) - c}} + 39 \][/tex]
[tex]\[ \frac{39^2 - c^2}{\sqrt{39^2 - 2c^2}} = \frac{c^2}{\sqrt{39^2 - c^2 - c}} + 39 \][/tex]
This also does not yield a straightforward simplification and reveals a non-standard numerical match pattern.
Given the above analysis and the outcomes of logical simplifications:
None of these options cleanly satisfy the provided equation, hence [tex]\( \text{None of the options } (\text{A, B, or C}) \text{ correctly solve the given equation.}\)[/tex]
So, the final conclusion is:
[tex]\[ \text{None of the given options is a solution to the equation.} \][/tex]