Find the formula for the [tex]$n$[/tex]th term of the arithmetic sequence [tex]$-27,-36,-45,-54, \ldots$[/tex]

A. [tex][tex]$a_n=-8 n-26$[/tex][/tex]
B. [tex]$a_n=-9 n-16$[/tex]
C. [tex]$a_n=-9 n-25$[/tex]
D. [tex][tex]$a_n=-9 n-18$[/tex][/tex]



Answer :

Let's analyze the given arithmetic sequence: [tex]\(-27, -36, -45, -54, \ldots\)[/tex]

1. Identify the first term ([tex]\(a_1\)[/tex]) and the common difference ([tex]\(d\)[/tex]).

- The first term, [tex]\(a_1\)[/tex], is clearly [tex]\(-27\)[/tex].
- To find the common difference, [tex]\(d\)[/tex], subtract the first term from the second term:
[tex]\[ d = -36 - (-27) = -36 + 27 = -9 \][/tex]

2. General formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence:

The [tex]\(n\)[/tex]th term of an arithmetic sequence is given by:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
Where:
- [tex]\(a_1\)[/tex] is the first term.
- [tex]\(d\)[/tex] is the common difference.
- [tex]\(n\)[/tex] is the term number.

3. Substitute the values of [tex]\(a_1\)[/tex] and [tex]\(d\)[/tex] into the formula:
[tex]\[ a_n = -27 + (n-1) \cdot (-9) \][/tex]

4. Simplify the expression:
[tex]\[ a_n = -27 + (n-1)(-9) \][/tex]
Distribute the [tex]\(-9\)[/tex]:
[tex]\[ a_n = -27 - 9(n-1) \][/tex]
Simplify inside the parentheses:
[tex]\[ a_n = -27 - 9n + 9 \][/tex]
Combine like terms:
[tex]\[ a_n = -9n - 18 \][/tex]

5. Final formula:

The formula for the [tex]\(n\)[/tex]th term of the arithmetic sequence is:
[tex]\[ a_n = -9n - 18 \][/tex]

6. Match with the given options:

The correct option is:
[tex]\[ \boxed{D. \, a_n = -9n - 18} \][/tex]