Rewrite the following expression so that it is easier to read and correct any formatting errors:

[tex]10 \left( \frac{3a}{5} - y \right) = \frac{3a}{2} - \frac{9}{2}[/tex]



Answer :

Certainly! Let's solve this step-by-step.

The given equation is:

[tex]\[ 10 \left( \frac{3a}{5} - y \right) = \frac{3a}{2} - \frac{9}{2} \][/tex]

### Step 1: Distribute the 10 inside the parenthesis
First, distribute the 10 to both terms inside the parenthesis on the left-hand side:

[tex]\[ 10 \cdot \frac{3a}{5} - 10y = \frac{3a}{2} - \frac{9}{2} \][/tex]

### Step 2: Simplify the multiplication
Simplify the term [tex]\(10 \cdot \frac{3a}{5}\)[/tex]:

[tex]\[ 10 \cdot \frac{3a}{5} = 6a \][/tex]

So, the equation now becomes:

[tex]\[ 6a - 10y = \frac{3a}{2} - \frac{9}{2} \][/tex]

### Step 3: Clear the fractions
To eliminate the fractions on the right-hand side, multiply every term in the equation by 2:

[tex]\[ 2(6a) - 2(10y) = 2 \left( \frac{3a}{2} \right) - 2 \left( \frac{9}{2} \right) \][/tex]

This simplifies to:

[tex]\[ 12a - 20y = 3a - 9 \][/tex]

### Step 4: Rearrange terms to isolate [tex]\(y\)[/tex]
Subtract [tex]\(3a\)[/tex] from both sides to get all [tex]\(a\)[/tex]-terms on one side:

[tex]\[ 12a - 3a - 20y = -9 \][/tex]

Simplify the left-hand side:

[tex]\[ 9a - 20y = -9 \][/tex]

### Step 5: Solve for [tex]\(y\)[/tex]
Add [tex]\(20y\)[/tex] to both sides:

[tex]\[ 9a = 20y - 9 \][/tex]

Next, add 9 to both sides:

[tex]\[ 9a + 9 = 20y \][/tex]

Divide everything by 20 to isolate [tex]\(y\)[/tex]:

[tex]\[ y = \frac{9a + 9}{20} \][/tex]

You can factor out a 9 from the numerator:

[tex]\[ y = \frac{9(a + 1)}{20} \][/tex]

Simplify the fraction:

[tex]\[ y = \frac{9}{20}a + \frac{9}{20} \][/tex]

Finally, since [tex]\(\frac{9}{20}\)[/tex] simplifies to 0.45, we get:

[tex]\[ y = 0.45a + 0.45 \][/tex]

Therefore, the solution to the equation is:

[tex]\[ y = 0.45a + 0.45 \][/tex]