Factor the expression shown below completely.

[tex]\[18x^2 - 60x + 50\][/tex]

A. [tex]\(3(2x - 5)^2\)[/tex]

B. [tex]\(6(3x - 5)^2\)[/tex]

C. [tex]\(2(3x - 5)^2\)[/tex]

D. [tex]\(2(6x - 5)^2\)[/tex]



Answer :

To factor the expression [tex]\( 18x^2 - 60x + 50 \)[/tex] completely, follow these steps:

1. Identify and extract the Greatest Common Factor (GCF).
- The coefficients of the terms are 18, -60, and 50. The GCF of 18, -60, and 50 is 2.
- Factoring out 2 from each term gives us:
[tex]\[ 18x^2 - 60x + 50 = 2 \left( 9x^2 - 30x + 25 \right) \][/tex]

2. Factor the quadratic expression inside the parentheses:
- We need to factor [tex]\( 9x^2 - 30x + 25 \)[/tex].

3. Examine the quadratic polynomial [tex]\( 9x^2 - 30x + 25 \)[/tex]:
- We look for factors of [tex]\( a \cdot c = 9 \cdot 25 = 225 \)[/tex], which add up to [tex]\( b = -30 \)[/tex].

4. Find the factors of 225 that add to -30:
- The factors are -15 and -15. So, we can split the middle term as follows:
[tex]\[ 9x^2 - 30x + 25 = 9x^2 - 15x - 15x + 25 \][/tex]

5. Group the terms and factor by grouping:
- Grouping the terms gives:
[tex]\[ (9x^2 - 15x) + (-15x + 25) \][/tex]
- Factoring out the common factors from each group:
[tex]\[ 3x(3x - 5) - 5(3x - 5) \][/tex]

6. Factor out the common binomial [tex]\( (3x - 5) \)[/tex]:
- This gives us:
[tex]\[ 3x(3x - 5) - 5(3x - 5) = (3x - 5)(3x - 5) = (3x - 5)^2 \][/tex]

7. Substitute back into the original expression:
- Recall we factored out a 2 initially. Combining everything gives:
[tex]\[ 18x^2 - 60x + 50 = 2(3x - 5)^2 \][/tex]

8. Conclude the complete factored form:
- The final factored form is:
[tex]\[ \boxed{2(3x - 5)^2} \][/tex]

Therefore, the correct answer is [tex]\( \boxed{2(3x - 5)^2} \)[/tex], which matches option C.