Thuy rolls a number cube 7 times. Which expression represents the probability of rolling a 4 exactly 2 times?

[tex]\[
\begin{aligned}
P(k \text { successes }) & ={ }_n C_k p^k(1-p)^{n-k} \\
{ }_n C_k & =\frac{n!}{(n-k)!k!}
\end{aligned}
\][/tex]

A. [tex]${ }_7 C_5\left(\frac{1}{6}\right)^2\left(\frac{1}{6}\right)^5$[/tex]

B. [tex]${ }_7 C_5\left(\frac{1}{6}\right)^5\left(\frac{5}{6}\right)^2$[/tex]

C. [tex]${ }_7 C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^5$[/tex]

D. [tex]$(2)^2(4)^5$[/tex]



Answer :

To determine the probability of rolling a 4 exactly 2 times out of 7 rolls of a number cube (where each side is equally likely), we will use the binomial probability formula:

[tex]\[ P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]

Here, [tex]\( n = 7 \)[/tex], [tex]\( k = 2 \)[/tex], [tex]\( p = \frac{1}{6} \)[/tex] (probability of rolling a 4), and [tex]\( q = 1 - p = \frac{5}{6} \)[/tex] (probability of not rolling a 4).

1. Binomial Coefficient Calculation:
[tex]\[ \binom{n}{k} = \binom{7}{2} = \frac{7!}{(7-2)!2!} = \frac{7!}{5!2!} = \frac{7 \times 6}{2 \times 1} = 21 \][/tex]

2. Probability Calculation:
[tex]\[ P(2 \text{ successes}) = 21 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^{5} \][/tex]

Given the set of expressions:
1. [tex]\(\binom{7}{5}\left(\frac{1}{6}\right)^2\left(\frac{1}{6}\right)^5\)[/tex]
2. [tex]\(\binom{7}{5}\left(\frac{1}{6}\right)^5\left(\frac{5}{6}\right)^2\)[/tex]
3. [tex]\(\binom{7}{2}\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^5\)[/tex]

From the calculations:
- The correct binomial coefficient should be [tex]\(\binom{7}{2}\)[/tex], not [tex]\(\binom{7}{5}\)[/tex].
- The powers of [tex]\(\frac{1}{6}\)[/tex] and [tex]\(\frac{5}{6}\)[/tex] should match the formulas used above.

Thus, the correct expression from the given choices is:
[tex]\[ \boxed{\binom{7}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5} \][/tex]