Write the equation of a line that includes the point [tex](-4,0)[/tex] and has a slope of [tex]-\frac{3}{5}[/tex] in slope-intercept form.

A. [tex]y=-\frac{3}{5}x-5[/tex]
B. [tex]y=-\frac{3}{5}x+\frac{12}{5}[/tex]
C. [tex]y=-\frac{3}{5}x-\frac{12}{5}[/tex]
D. [tex]y=-\frac{3}{5}x-12[/tex]



Answer :

To find the equation of a line in slope-intercept form (which is [tex]\( y = mx + b \)[/tex]), given a point and a slope, we need to follow a systematic process. We are given the point [tex]\((-4, 0)\)[/tex] and the slope [tex]\( m = -\frac{3}{5} \)[/tex].

1. Start with the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is the given point and [tex]\(m\)[/tex] is the slope.

2. Substitute the given point [tex]\((-4, 0)\)[/tex] and the slope [tex]\(m = -\frac{3}{5}\)[/tex] into the point-slope equation:
[tex]\[ y - 0 = -\frac{3}{5}(x - (-4)) \][/tex]
Simplify within the parenthesis:
[tex]\[ y = -\frac{3}{5}(x + 4) \][/tex]

3. Distribute the slope [tex]\(-\frac{3}{5}\)[/tex] through the parentheses:
[tex]\[ y = -\frac{3}{5}x - \frac{3}{5} \cdot 4 \][/tex]

4. Calculate [tex]\(-\frac{3}{5} \cdot 4\)[/tex]:
[tex]\[ -\frac{3}{5} \cdot 4 = -\frac{12}{5} \][/tex]

5. Therefore, the equation in slope-intercept form is:
[tex]\[ y = -\frac{3}{5}x - \frac{12}{5} \][/tex]

Thus, the correct equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{3}{5}x - \frac{12}{5} \][/tex]

Therefore, the correct choice from the given options is:
[tex]\[ y = -\frac{3}{5}x - \frac{12}{5} \][/tex]