Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ \frac{\left(4 m^2 n\right)^2}{2 m^5 n} \][/tex]

A. [tex]\( 4 m^{-1} n \)[/tex]

B. [tex]\( 8 m^{-1} n \)[/tex]

C. [tex]\( 4 m^9 n^3 \)[/tex]

D. [tex]\( 8 m^9 n^3 \)[/tex]



Answer :

To find an equivalent expression for [tex]\(\frac{(4 m^2 n)^2}{2 m^5 n}\)[/tex], let's simplify the given expression step-by-step.

1. First, let's expand the numerator [tex]\((4 m^2 n)^2\)[/tex]:
[tex]\[ (4 m^2 n)^2 = 4^2 \cdot (m^2)^2 \cdot n^2 \][/tex]
Simplifying further:
[tex]\[ (4^2) = 16, \quad (m^2)^2 = m^{2 \cdot 2} = m^4, \quad n^2 \][/tex]
So the expanded numerator becomes:
[tex]\[ 16 m^4 n^2 \][/tex]

2. Now, let's write the entire expression with the expanded numerator:
[tex]\[ \frac{16 m^4 n^2}{2 m^5 n} \][/tex]

3. Next, let's simplify the fraction by dividing the coefficients:
[tex]\[ \frac{16}{2} = 8 \][/tex]
Thus, the expression becomes:
[tex]\[ \frac{8 m^4 n^2}{m^5 n} \][/tex]

4. Now, simplify the powers of [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:
- For the powers of [tex]\(m\)[/tex]:
[tex]\[ m^4 \div m^5 = m^{4-5} = m^{-1} \][/tex]
- For the powers of [tex]\(n\)[/tex]:
[tex]\[ n^2 \div n = n^{2-1} = n^{1} = n \][/tex]

So, the expression simplifies to:
[tex]\[ 8 m^{-1} n \][/tex]

5. Finally, let's write the simplified expression clearly:
[tex]\[ 8 \frac{n}{m} \][/tex]

From this detailed solution, it's clear that the expression [tex]\(\frac{(4 m^2 n)^2}{2 m^5 n}\)[/tex] simplifies to [tex]\(8 m^{-1} n\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{8 m^{-1} n} \][/tex]

This matches option B.