Answered

Simplify.

[tex]\left(x^5\right)^{\frac{7}{10}}[/tex]

Write your answer without parentheses. Assume that the variable represents a positive real number.



Answer :

To simplify the expression [tex]\(\left(x^5\right)^{\frac{7}{10}}\)[/tex] and write the answer without parentheses, let's follow the steps straight through:

1. Understand the given expression: You are given [tex]\(\left(x^5\right)^{\frac{7}{10}}\)[/tex].

2. Use the power of a power property: When you raise a power to another power, you multiply the exponents. Mathematically, [tex]\(\left(a^m\right)^n = a^{mn}\)[/tex].

Applying this property to our expression, we get:
[tex]\[ \left(x^5\right)^{\frac{7}{10}} = x^{5 \cdot \frac{7}{10}} \][/tex]

3. Multiply the exponents: Calculate the product of the exponents [tex]\(5\)[/tex] and [tex]\(\frac{7}{10}\)[/tex]:
[tex]\[ 5 \cdot \frac{7}{10} = \frac{5 \cdot 7}{10} = \frac{35}{10} = 3.5 \][/tex]

4. Write the simplified result: After multiplying the exponents, we get:
[tex]\[ x^{3.5} \][/tex]

Therefore, the simplified expression is:
\[
x^{3.5}
\