Answered

Select the correct answer.

Which vector matrix represents the reflection of the vector [tex]\(\langle -1, 5 \rangle\)[/tex] across the line [tex]\(x = y\)[/tex]?

A. [tex]\(\left[\begin{array}{c} 1 \\ -5 \end{array}\right]\)[/tex]

B. [tex]\(\left[\begin{array}{c} -5 \\ 1 \end{array}\right]\)[/tex]

C. [tex]\(\left[\begin{array}{c} 5 \\ -1 \end{array}\right]\)[/tex]

D. [tex]\(\left[\begin{array}{c} -1 \\ -5 \end{array}\right]\)[/tex]



Answer :

To determine the reflection of the vector [tex]\(\langle -1, 5 \rangle\)[/tex] across the line [tex]\(x = y\)[/tex], we follow a straightforward transformation. When a vector is reflected across the line [tex]\(x = y\)[/tex], the [tex]\(x\)[/tex]-coordinate and the [tex]\(y\)[/tex]-coordinate of the vector are swapped.

We start with the vector:
[tex]\[ \langle -1, 5 \rangle \][/tex]

To reflect this vector across the line [tex]\(x = y\)[/tex], we swap the components:
[tex]\[ \langle -1, 5 \rangle \quad \rightarrow \quad \langle 5, -1 \rangle \][/tex]

Thus, the vector [tex]\(\langle -1, 5 \rangle\)[/tex] reflected across the line [tex]\(x = y\)[/tex] becomes [tex]\(\langle 5, -1 \rangle\)[/tex].

Now, we need to select the correct answer from the given options. The correct reflected vector is:
[tex]\[ \left[\begin{array}{c}5 \\ -1\end{array}\right] \][/tex]

So, the correct answer is:

C. [tex]\(\left[\begin{array}{c}5 \\ -1\end{array}\right]\)[/tex]