Select the correct answer.

Which point lies on the circle represented by the equation [tex](x-3)^2+(y+4)^2=6^2[/tex]?

A. [tex](9, -2)[/tex]

B. [tex](0, 11)[/tex]

C. [tex](3, 10)[/tex]

D. [tex](-9, 4)[/tex]

E. [tex](-3, -4)[/tex]



Answer :

To determine which point lies on the circle represented by the equation [tex]\((x-3)^2 + (y+4)^2 = 6^2\)[/tex], we will check each given point to see if it satisfies the equation of the circle.

The equation of the circle is:
[tex]\[ (x - 3)^2 + (y + 4)^2 = 36 \][/tex]

We will evaluate each point:

1. Point A: [tex]\((9, -2)\)[/tex]

Substitute [tex]\(x = 9\)[/tex] and [tex]\(y = -2\)[/tex] into the equation:
[tex]\[ (9 - 3)^2 + (-2 + 4)^2 = 6^2 \][/tex]
[tex]\[ 6^2 + 2^2 = 36 \][/tex]
[tex]\[ 36 + 4 = 40 \quad \text{(not 36, so not on the circle)} \][/tex]

2. Point B: [tex]\((0, 11)\)[/tex]

Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = 11\)[/tex] into the equation:
[tex]\[ (0 - 3)^2 + (11 + 4)^2 = 6^2 \][/tex]
[tex]\[ (-3)^2 + 15^2 = 36 \][/tex]
[tex]\[ 9 + 225 = 234 \quad \text{(not 36, so not on the circle)} \][/tex]

3. Point C: [tex]\((3, 10)\)[/tex]

Substitute [tex]\(x = 3\)[/tex] and [tex]\(y = 10\)[/tex] into the equation:
[tex]\[ (3 - 3)^2 + (10 + 4)^2 = 6^2 \][/tex]
[tex]\[ 0^2 + 14^2 = 36 \][/tex]
[tex]\[ 0 + 196 = 196 \quad \text{(not 36, so not on the circle)} \][/tex]

4. Point D: [tex]\((-9, 4)\)[/tex]

Substitute [tex]\(x = -9\)[/tex] and [tex]\(y = 4\)[/tex] into the equation:
[tex]\[ (-9 - 3)^2 + (4 + 4)^2 = 6^2 \][/tex]
[tex]\[ (-12)^2 + 8^2 = 36 \][/tex]
[tex]\[ 144 + 64 = 208 \quad \text{(not 36, so not on the circle)} \][/tex]

5. Point E: [tex]\((-3, -4)\)[/tex]

Substitute [tex]\(x = -3\)[/tex] and [tex]\(y = -4\)[/tex] into the equation:
[tex]\[ (-3 - 3)^2 + (-4 + 4)^2 = 6^2 \][/tex]
[tex]\[ (-6)^2 + 0^2 = 36 \][/tex]
[tex]\[ 36 + 0 = 36 \quad \text{(which equals 36, so it is on the circle)} \][/tex]

Therefore, the correct answer is:

E. [tex]\((-3, -4)\)[/tex]