Answered

Type the correct answer in each box.

Find the resulting vector matrix of this matrix multiplication.

[tex]\[
\begin{array}{l}
\left[\begin{array}{cc}
6 & -5 \\
-3 & 4
\end{array}\right] \times \left[\begin{array}{c}
-1 \\
3
\end{array}\right] = \left[\begin{array}{l}
a \\
b
\end{array}\right]
\\
a = \square \text{, and } b = \square
\end{array}
\][/tex]



Answer :

To find the resulting vector matrix of the given matrix multiplication, we perform the following steps:

1. Identify the given matrix [tex]\(A\)[/tex] and vector [tex]\(B\)[/tex]:
[tex]\[ A = \begin{bmatrix} 6 & -5 \\ -3 & 4 \\ \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} -1 \\ 3 \\ \end{bmatrix} \][/tex]

2. Compute the first element [tex]\(a\)[/tex] of the resulting vector by multiplying the first row of matrix [tex]\(A\)[/tex] with vector [tex]\(B\)[/tex]:
[tex]\[ a = (6 \times -1) + (-5 \times 3) \][/tex]
[tex]\[ a = -6 - 15 \][/tex]
[tex]\[ a = -21 \][/tex]

3. Compute the second element [tex]\(b\)[/tex] of the resulting vector by multiplying the second row of matrix [tex]\(A\)[/tex] with vector [tex]\(B\)[/tex]:
[tex]\[ b = (-3 \times -1) + (4 \times 3) \][/tex]
[tex]\[ b = 3 + 12 \][/tex]
[tex]\[ b = 15 \][/tex]

So, the resulting vector matrix of the multiplication is:
[tex]\[ \begin{bmatrix} -21 \\ 15 \\ \end{bmatrix} \][/tex]

Therefore, [tex]\(a = -21\)[/tex] and [tex]\(b = 15\)[/tex].