Select the correct answer.

What is the solution set of this inequality?

[tex]\[ 8(x - 5) - 3x \geq -20 \][/tex]

A. [tex]\( x \geq -3 \)[/tex]
B. [tex]\( x \geq 4 \)[/tex]
C. [tex]\( x \leq 12 \)[/tex]
D. [tex]\( x \leq -12 \)[/tex]



Answer :

To determine the solution set of the given inequality [tex]\(8(x-5) - 3x \geq -20\)[/tex], follow these steps:

1. Distribute and combine like terms:
Start with the inequality:
[tex]\[ 8(x-5) - 3x \geq -20 \][/tex]
First, distribute the 8 through the term [tex]\( (x-5) \)[/tex]:
[tex]\[ 8x - 40 - 3x \geq -20 \][/tex]

2. Combine like terms:
Combine the [tex]\(x\)[/tex] terms on the left side:
[tex]\[ (8x - 3x) - 40 \geq -20 \][/tex]
Simplify it to:
[tex]\[ 5x - 40 \geq -20 \][/tex]

3. Isolate the variable [tex]\(x\)[/tex]:
Add 40 to both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 5x - 40 + 40 \geq -20 + 40 \][/tex]
Simplify this to:
[tex]\[ 5x \geq 20 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 5 to solve for [tex]\(x\)[/tex]:
[tex]\[ x \geq \frac{20}{5} \][/tex]
Simplify the division:
[tex]\[ x \geq 4 \][/tex]

Conclusively, the solution set for the inequality [tex]\(8(x-5) - 3x \geq -20\)[/tex] is:
[tex]\[ x \geq 4 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{B. \, x \geq 4} \][/tex]