Complete the following Powers of 2 table to prepare to solve the problem that follows.

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\multirow{2}{*}{\begin{tabular}{c}
Powers \\
of 2
\end{tabular}} & [tex]$2^2=\square$[/tex] & [tex]$2^3=\square$[/tex] & [tex]$2^4=\square$[/tex] & [tex]$2^5=\square$[/tex] & [tex]$2^6=\square$[/tex] \\
\cline{2-6}
& [tex]$2^7=\square$[/tex] & [tex]$2^8=\square$[/tex] & [tex]$2^9=\square$[/tex] & [tex]$2^{10}=\square$[/tex] & [tex]$2^{11}=\square$[/tex] \\
\hline
\end{tabular}

Example: Solve [tex]$3(2)^x=96$[/tex] for [tex]$x$[/tex].
[tex]\[
\begin{array}{c}
3(2)^x=96 \\
\frac{3(2)^x}{3}=\frac{96}{3} \\
2^x=32 \\
2^x=2^5 \\
x=5
\end{array}
\][/tex]

Original Equation
Divide both sides by 3 to isolate the power.
Simplify.
Rewrite 32 as a power of 2.
Solve.



Answer :

To complete the Powers of 2 table, we populate the values of [tex]\(2^2\)[/tex], [tex]\(2^3\)[/tex], [tex]\(2^4\)[/tex], [tex]\(2^5\)[/tex], [tex]\(2^6\)[/tex], [tex]\(2^7\)[/tex], [tex]\(2^8\)[/tex], and [tex]\(2^9\)[/tex].

Here are the completed values:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline \multirow{2}{*}{\begin{tabular}{c} Powers \\ of 2 \end{tabular}} & $2^2=4$ & $2^3=8$ & $2^a=16$ & $2^4=16$ & $2^5=32$ \\ \cline { 2 - 6 } & $2^6=64$ & $2^7=128$ & $2^8=256$ & $2^9=512$ \\ \hline \end{tabular} \][/tex]

Now, let's solve Example A: [tex]\(3(2)^x = 96\)[/tex] for [tex]\(x\)[/tex].

1. Original Equation:
[tex]\[ 3(2)^x = 96 \][/tex]

2. Divide both sides by 3 to isolate the power:
[tex]\[ \frac{3(2)^x}{3} = \frac{96}{3} \implies 2^x = 32 \][/tex]

3. Simplify:
[tex]\[ 2^x = 32 \][/tex]

4. Rewrite 32 as a power of 2:
[tex]\[ 32 = 2^5 \implies 2^x = 2^5 \][/tex]

5. Solve:
Since the bases are the same, we equate the exponents:
[tex]\[ x = 5 \][/tex]

Therefore, the solution for [tex]\(3(2)^x = 96\)[/tex] is [tex]\(x = 5\)[/tex].