Sure, let's solve the inequality step-by-step.
1. Identify the inequality: We need to verify if [tex]\(5x - y > -3\)[/tex].
2. Choose example values: Let’s consider [tex]\(x = 1\)[/tex] and [tex]\(y = 1\)[/tex] to check if the inequality holds.
3. Substitute the values into the inequality:
[tex]\[
5(1) - 1
\][/tex]
4. Perform the arithmetic operation inside the inequality:
[tex]\[
5 \cdot 1 - 1 = 5 - 1 = 4
\][/tex]
5. Compare the result with [tex]\(-3\)[/tex]:
[tex]\[
4 > -3
\][/tex]
We observe that with [tex]\(x = 1\)[/tex] and [tex]\(y = 1\)[/tex], the inequality [tex]\(5x - y > -3\)[/tex] is satisfied since [tex]\(4\)[/tex] is indeed greater than [tex]\(-3\)[/tex].
Hence, for the values [tex]\(x = 1\)[/tex] and [tex]\(y = 1\)[/tex], the inequality [tex]\(5x - y > -3\)[/tex] holds true.