Solve the inequality for [tex]b[/tex].

[tex]
10 \leq -\frac{2}{3}(9 + 12b)
[/tex]

A. [tex]b \leq -2[/tex]

B. [tex]b \geq -2[/tex]

C. [tex]b \leq \frac{4}{3}[/tex]

D. [tex]b \geq \frac{4}{3}[/tex]



Answer :

Let's solve the inequality step-by-step:

Given:
[tex]\[ 10 \leq -\frac{2}{3}(9 + 12b) \][/tex]

Step 1: Distribute [tex]\(-\frac{2}{3}\)[/tex] within the parentheses:
[tex]\[ -\frac{2}{3} \cdot 9 + (-\frac{2}{3}) \cdot 12b \][/tex]
Calculate each term separately:
[tex]\[ -\frac{2}{3} \cdot 9 = -6 \][/tex]
[tex]\[ -\frac{2}{3} \cdot 12b = -8b \][/tex]
Combining these, the inequality becomes:
[tex]\[ 10 \leq -6 - 8b \][/tex]

Step 2: Isolate the term with [tex]\(b\)[/tex]. Start by adding 6 to both sides:
[tex]\[ 10 + 6 \leq -6 + 6 - 8b \][/tex]
This simplifies to:
[tex]\[ 16 \leq -8b \][/tex]

Step 3: Solve for [tex]\(b\)[/tex]. Divide both sides by [tex]\(-8\)[/tex] and remember to reverse the inequality sign when dividing by a negative number:
[tex]\[ \frac{16}{-8} \geq b \][/tex]
[tex]\[ -2 \geq b \][/tex]
or equivalently:
[tex]\[ b \leq -2 \][/tex]

Thus, the solution to the inequality is:
[tex]\[ \boxed{b \leq -2} \][/tex]

The correct answer is:
A. [tex]\(b \leq -2\)[/tex]