\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-5 & 8 \\
\hline
-3 & 4 \\
\hline
-1 & 0 \\
\hline
1 & -2 \\
\hline
3 & -2 \\
\hline
5 & 0 \\
\hline
7 & 4 \\
\hline
\end{tabular}

Which is a valid prediction about the continuous function [tex]$f(x)$[/tex]?

A. [tex]$f(x) \geq 0$[/tex] over the interval [tex]$[5, \infty)$[/tex].
B. [tex]$f(x) \leq 0$[/tex] over the interval [tex]$[-1, \infty)$[/tex].
C. [tex]$f(x) \ \textgreater \ 0$[/tex] over the interval [tex]$(-\infty, 1)$[/tex].
D. [tex]$f(x) \ \textless \ 0$[/tex] over the interval [tex]$(-\infty, -1)$[/tex].



Answer :

Let's analyze the given function [tex]\( f(x) \)[/tex] for each interval based on the table provided:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -5 & 8 \\ \hline -3 & 4 \\ \hline -1 & 0 \\ \hline 1 & -2 \\ \hline 3 & -2 \\ \hline 5 & 0 \\ \hline 7 & 4 \\ \hline \end{array} \][/tex]

1. Checking [tex]\(f(x) \geq 0\)[/tex] over the interval [tex]\([5, \infty)\)[/tex]:

For [tex]\(x = 5\)[/tex], [tex]\(f(x) = 0\)[/tex] (which is [tex]\(\geq 0\)[/tex]).

For [tex]\(x = 7\)[/tex], [tex]\(f(x) = 4\)[/tex] (which is [tex]\(\geq 0\)[/tex]).

There are no values beyond 7 given, so based on these points, [tex]\(f(x) \geq 0\)[/tex] over the interval [tex]\([5, \infty)\)[/tex] seems valid.

2. Checking [tex]\(f(x) \leq 0\)[/tex] over the interval [tex]\([-1, \infty)\)[/tex]:

For [tex]\(x = -1\)[/tex], [tex]\(f(x) = 0\)[/tex] (which is [tex]\(\leq 0\)[/tex]).

For [tex]\(x = 1\)[/tex], [tex]\(f(x) = -2\)[/tex] (which is [tex]\(\leq 0\)[/tex]).

For [tex]\(x = 3\)[/tex], [tex]\(f(x) = -2\)[/tex] (which is [tex]\(\leq 0\)[/tex]).

For [tex]\(x = 5\)[/tex], [tex]\(f(x) = 0\)[/tex] (which is [tex]\(\leq 0\)[/tex]).

For [tex]\(x = 7\)[/tex], [tex]\(f(x) = 4\)[/tex] (which is not [tex]\(\leq 0\)[/tex]).

Since [tex]\(f(x)\)[/tex] is not [tex]\(\leq 0\)[/tex] at [tex]\(x = 7\)[/tex], this prediction is invalid.

3. Checking [tex]\(f(x) > 0\)[/tex] over the interval [tex]\((-\infty, 1)\)[/tex]:

For [tex]\(x = -5\)[/tex], [tex]\(f(x) = 8\)[/tex] (which is [tex]\(> 0\)[/tex]).

For [tex]\(x = -3\)[/tex], [tex]\(f(x) = 4\)[/tex] (which is [tex]\(> 0\)[/tex]).

For [tex]\(x = -1\)[/tex], [tex]\(f(x) = 0\)[/tex] (which is not [tex]\(> 0\)[/tex]).

Since [tex]\(f(x)\)[/tex] is not [tex]\(> 0\)[/tex] at [tex]\(x = -1\)[/tex], this prediction is invalid.

4. Checking [tex]\(f(x) < 0\)[/tex] over the interval [tex]\((-\infty, -1)\)[/tex]:

For [tex]\(x = -5\)[/tex], [tex]\(f(x) = 8\)[/tex] (which is not [tex]\(< 0\)[/tex]).

For [tex]\(x = -3\)[/tex], [tex]\(f(x) = 4\)[/tex] (which is not [tex]\(< 0\)[/tex]).

Since [tex]\(f(x)\)[/tex] is not [tex]\(< 0\)[/tex] for values in [tex]\((-\infty, -1)\)[/tex], this prediction is invalid.

After evaluating all intervals, the valid prediction about the continuous function [tex]\( f(x) \)[/tex] is:

[tex]\[ f(x) \geq 0 \text{ over the interval } [5, \infty). \][/tex]