The number of loaves of bread purchased and the total cost of the bread in dollars can be modeled by the equation [tex]c = 3.5b[/tex]. Which table of values matches the equation and includes only viable solutions?

\begin{tabular}{|c|c|}
\hline
Loaves [tex]$(b)$[/tex] & Cost [tex]$(c)$[/tex] \\
\hline
0 & 0 \\
\hline
3 & 10.5 \\
\hline
6 & 21 \\
\hline
9 & 31.5 \\
\hline
\end{tabular}



Answer :

To solve the problem of selecting the correct table of values that fits the equation [tex]\( c = 3.5 \cdot b \)[/tex], where [tex]\( c \)[/tex] represents the cost in dollars and [tex]\( b \)[/tex] represents the number of loaves, let's examine each table one by one.

Table 1:

[tex]\[ \begin{array}{|c|c|} \hline \text{Loaves } (b) & \text{Cost } (c) \\ \hline -2 & -7 \\ \hline 0 & 0 \\ \hline 2 & 7 \\ \hline 2 & 14 \\ \hline \end{array} \][/tex]

Let's verify if each pair (loaves, cost) satisfies the equation [tex]\( c = 3.5 \cdot b \)[/tex]:

1. For [tex]\( b = -2 \)[/tex]: [tex]\( c = 3.5 \cdot (-2) = -7 \)[/tex] (This is correct).
2. For [tex]\( b = 0 \)[/tex]: [tex]\( c = 3.5 \cdot 0 = 0 \)[/tex] (This is correct).
3. For [tex]\( b = 2 \)[/tex]: [tex]\( c = 3.5 \cdot 2 = 7 \)[/tex] (This is correct).
4. For [tex]\( b = 2 \)[/tex]: [tex]\( c = 3.5 \cdot 2 = 7 \)[/tex] not 14 (14 is incorrect).

Since the last pair does not satisfy the equation, Table 1 is not viable.

Table 2:

[tex]\[ \begin{array}{|c|c|c|} \hline \text{Loaves } (b) & \text{Cost } (c) \\ \hline 0 & 0 \\ \hline 0.5 & 1.75 \\ \hline 1.5 & 3.5 \\ \hline 1.5 & 5.25 \\ \hline \end{array} \][/tex]

Let's verify if each pair (loaves, cost) satisfies the equation [tex]\( c = 3.5 \cdot b \)[/tex]:

1. For [tex]\( b = 0 \)[/tex]: [tex]\( c = 3.5 \cdot 0 = 0 \)[/tex] (This is correct).
2. For [tex]\( b = 0.5 \)[/tex]: [tex]\( c = 3.5 \cdot 0.5 = 1.75 \)[/tex] (This is correct).
3. For [tex]\( b = 1.5 \)[/tex]: [tex]\( c = 3.5 \cdot 1.5 = 5.25 \)[/tex] (Incorrect, should be 5.25).

Since not all pairs satisfy the equation, Table 2 is not viable.

Table 3:

[tex]\[ \begin{array}{|c|c|} \hline \text{Loaves } (b) & \text{Cost } (c) \\ \hline 0 & 0 \\ \hline 3 & 10.5 \\ \hline 6 & 21 \\ \hline 9 & 31.5 \\ \hline \end{array} \][/tex]

Let's verify if each pair (loaves, cost) satisfies the equation [tex]\( c = 3.5 \cdot b \)[/tex]:

1. For [tex]\( b = 0 \)[/tex]: [tex]\( c = 3.5 \cdot 0 = 0 \)[/tex] (This is correct).
2. For [tex]\( b = 3 \)[/tex]: [tex]\( c = 3.5 \cdot 3 = 10.5 \)[/tex] (This is correct).
3. For [tex]\( b = 6 \)[/tex]: [tex]\( c = 3.5 \cdot 6 = 21 \)[/tex] (This is correct).
4. For [tex]\( b = 9 \)[/tex]: [tex]\( c = 3.5 \cdot 9 = 31.5 \)[/tex] (This is correct).

Since all pairs in Table 3 satisfy the equation, Table 3 is the correct and viable table of values.

Therefore, the table of values that matches the equation and includes only viable solutions is:

[tex]\[ \begin{array}{|c|c|} \hline \text{Loaves } (b) & \text{Cost } (c) \\ \hline 0 & 0 \\ \hline 3 & 10.5 \\ \hline 6 & 21 \\ \hline 9 & 31.5 \\ \hline \end{array} \][/tex]