Answer :

Let's solve the given system of linear equations step-by-step:

[tex]\[ \begin{cases} 3x - 4y = -6 \quad (1) \\ 2x + 4y = 16 \quad (2) \end{cases} \][/tex]

Step 1: Add the two equations to eliminate [tex]\( y \)[/tex].

First, let's add equation (1) to equation (2):

[tex]\[ (3x - 4y) + (2x + 4y) = -6 + 16 \][/tex]

Simplify:

[tex]\[ 3x + 2x - 4y + 4y = -6 + 16 \][/tex]

Combine like terms:

[tex]\[ 5x = 10 \][/tex]

Step 2: Solve for [tex]\( x \)[/tex].

To find [tex]\( x \)[/tex], divide both sides of the equation by 5:

[tex]\[ x = \frac{10}{5} \][/tex]

[tex]\[ x = 2 \][/tex]

Step 3: Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let’s use equation (2):

[tex]\[ 2x + 4y = 16 \][/tex]

Substitute [tex]\( x = 2 \)[/tex] into the equation:

[tex]\[ 2(2) + 4y = 16 \][/tex]

Simplify:

[tex]\[ 4 + 4y = 16 \][/tex]

Step 4: Isolate [tex]\( y \)[/tex].

Subtract 4 from both sides of the equation:

[tex]\[ 4y = 12 \][/tex]

Divide both sides by 4:

[tex]\[ y = \frac{12}{4} \][/tex]

[tex]\[ y = 3 \][/tex]

Thus, the solution to the system of equations is:

[tex]\[ x = 2, \quad y = 3 \][/tex]

So, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = 3 \)[/tex].