Select the correct table.

Using the data provided, identify the lake that is not sustainable.

Lake A
\begin{tabular}{|l|c|}
\hline
Recharges (inflows) & Rate (m/minute) \\
\hline
River 1 & 6.0 \\
\hline
Precipitation & 2.4 \\
\hline
River 2 & 2.1 \\
\hline
Discharges (outflows) & \\
\hline
Irrigation Canals & 5.1 \\
\hline
Evaporation & 4.0 \\
\hline
\end{tabular}

Lake B
\begin{tabular}{|l|c|}
\hline
Recharges (inflows) & Rate (m/minute) \\
\hline
River 1 & 5.6 \\
\hline
Precipitation & 0.4 \\
\hline
River 2 & 3.1 \\
\hline
Discharges (outflows) & \\
\hline
River 3 & 4.3 \\
\hline
Irrigation Canals & 3.1 \\
\hline
Evaporation & 3.5 \\
\hline
\end{tabular}

Lake C
\begin{tabular}{|l|c|}
\hline
Recharges (inflows) & Rate (m/minute) \\
\hline
River 1 & 2.6 \\
\hline
Precipitation & 3.0 \\
\hline
River 2 & 1.2 \\
\hline
Discharges (outflows) & \\
\hline
River 3 & 2.3 \\
\hline
Evaporation & 3.5 \\
\hline
\end{tabular}



Answer :

Let's analyze the sustainability of each lake by calculating the net recharge (inflows minus outflows) for each lake using the provided data:

Lake A:
- Inflows:
- River 1: 6.0 m/min
- Precipitation: 2.4 m/min
- River 2: 2.1 m/min
- Total Inflows: [tex]\(6.0 + 2.4 + 2.1 = 10.5\)[/tex] m/min

- Outflows:
- Irrigation Canals: 5.1 m/min
- Evaporation: 4.0 m/min
- Total Outflows: [tex]\(5.1 + 4.0 = 9.1\)[/tex] m/min

- Net Recharge: [tex]\(10.5 - 9.1 = 1.4\)[/tex] m/min

Lake B:
- Inflows:
- River 1: 5.6 m/min
- Precipitation: 0.4 m/min
- River 2: 3.1 m/min
- Total Inflows: [tex]\(5.6 + 0.4 + 3.1 = 9.1\)[/tex] m/min

- Outflows:
- River 3: 4.3 m/min
- Irrigation Canals: 3.1 m/min
- Evaporation: 3.5 m/min
- Total Outflows: [tex]\(4.3 + 3.1 + 3.5 = 10.9\)[/tex] m/min

- Net Recharge: [tex]\(9.1 - 10.9 = -1.8\)[/tex] m/min

Lake C:
- Inflows:
- River 1: 2.6 m/min
- Precipitation: 3.0 m/min
- River 2: 1.2 m/min
- Total Inflows: [tex]\(2.6 + 3.0 + 1.2 = 6.8\)[/tex] m/min

- Outflows:
- River 3: 2.3 m/min
- Evaporation: 3.5 m/min
- Total Outflows: [tex]\(2.3 + 3.5 = 5.8\)[/tex] m/min

- Net Recharge: [tex]\(6.8 - 5.8 = 1.0\)[/tex] m/min

Based on the net recharge calculations:
- Lake A has a net recharge of [tex]\(1.4\)[/tex] m/min.
- Lake B has a net recharge of [tex]\(-1.8\)[/tex] m/min.
- Lake C has a net recharge of [tex]\(1.0\)[/tex] m/min.

Since a negative net recharge indicates that outflows exceed inflows, Lake B is not sustainable.