Solve the following system of equations:

[tex]\[
\left\{
\begin{array}{lll}
2x & + y & = 8 \\
3x & - 2y & = 5
\end{array}
\right.
\][/tex]



Answer :

Sure, let's solve this system of linear equations step-by-step:

We have the following system of equations:
[tex]\[ \begin{cases} 2x + y = 8 \quad \text{(1)} \\ 3x - 2y = 5 \quad \text{(2)} \end{cases} \][/tex]

Step 1: Solve one of the equations for one variable.

We can solve Equation (1) for [tex]\(y\)[/tex]:
[tex]\[ y = 8 - 2x \][/tex]

Step 2: Substitute this expression into the other equation.

Substitute [tex]\(y = 8 - 2x\)[/tex] into Equation (2):
[tex]\[ 3x - 2(8 - 2x) = 5 \][/tex]

Step 3: Simplify and solve for [tex]\(x\)[/tex].

Distribute the [tex]\(-2\)[/tex] and combine like terms:
[tex]\[ 3x - 16 + 4x = 5 \][/tex]
[tex]\[ 7x - 16 = 5 \][/tex]

Add 16 to both sides:
[tex]\[ 7x = 21 \][/tex]

Divide both sides by 7:
[tex]\[ x = 3 \][/tex]

Step 4: Substitute [tex]\(x\)[/tex] back into the expression for [tex]\(y\)[/tex].

Now we substitute [tex]\(x = 3\)[/tex] back into [tex]\(y = 8 - 2x\)[/tex] to find [tex]\(y\)[/tex]:
[tex]\[ y = 8 - 2(3) \][/tex]
[tex]\[ y = 8 - 6 \][/tex]
[tex]\[ y = 2 \][/tex]

Final Solution:

Putting it all together, the solution to the system of equations is:
[tex]\[ (x, y) = (3, 2) \][/tex]

So, the solution is:
[tex]\[ x = 3, \quad y = 2 \][/tex]