Select the correct answer.

Which function defines [tex](f+g)(x)[/tex]?
[tex]
\begin{array}{l}
f(x)=\ln(2x) - 15 \\
g(x)=3\sin(x) - 7
\end{array}
[/tex]

A. [tex](f+g)(x) = \ln(2x) + 3\sin(x) + 22[/tex]

B. [tex](f+g)(x) = \ln(2x) + 3\sin(x) - 22[/tex]

C. [tex](f+g)(x) = \ln(2x) - 3\sin(x) - 8[/tex]

D. [tex](f+g)(x) = \ln(2x) + \sin(x) - 66[/tex]



Answer :

To determine which function defines [tex]\((f+g)(x)\)[/tex], we first need to understand the individual functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

Given:
[tex]\[ f(x) = \ln(2x) - 15 \][/tex]
[tex]\[ g(x) = 3 \sin(x) - 7 \][/tex]

To find [tex]\((f+g)(x)\)[/tex], we simply add [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]

Substitute the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ (f+g)(x) = (\ln(2x) - 15) + (3 \sin(x) - 7) \][/tex]

Combine the terms:

[tex]\[ (f+g)(x) = \ln(2x) - 15 + 3 \sin(x) - 7 \][/tex]

Simplify the expression by combining the constants:

[tex]\[ (f+g)(x) = \ln(2x) + 3 \sin(x) - 15 - 7 \][/tex]

[tex]\[ (f+g)(x) = \ln(2x) + 3 \sin(x) - 22 \][/tex]

So, the function that defines [tex]\((f+g)(x)\)[/tex] is:

[tex]\[ (f+g)(x) = \ln(2x) + 3 \sin(x) - 22 \][/tex]

The correct answer is:

B. [tex]\((f+g)(x) = \ln(2x) + 3 \sin(x) - 22\)[/tex]