Question 1 (Multiple Choice, Worth 2 points)

Which expression is equivalent to [tex]\left(\frac{(2.3)^5}{(0.9)^4}\right)^3[/tex]?

A. [tex]2.5^3[/tex]

B. [tex]2.5^{15}[/tex]

C. [tex]\frac{(2.3)^8}{(0.9)^7}[/tex]

D. [tex]\frac{(2.3)^{15}}{(0.9)^{12}}[/tex]



Answer :

To solve the expression [tex]\(\left(\frac{(2.3)^5}{(0.9)^4}\right)^3\)[/tex], we need to apply the laws of exponents. Let me guide you through the steps:

1. Understand the Given Expression:
[tex]\[ \left(\frac{(2.3)^5}{(0.9)^4}\right)^3 \][/tex]

2. Apply the Power of a Quotient Rule:
The power of a quotient rule states that [tex]\(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\)[/tex]. So, we apply this to the given expression:
[tex]\[ \left(\frac{(2.3)^5}{(0.9)^4}\right)^3 = \frac{((2.3)^5)^3}{((0.9)^4)^3} \][/tex]

3. Simplify the Exponents:
To simplify this further, use the power of a power rule, which states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
[tex]\[ ((2.3)^5)^3 = (2.3)^{5 \cdot 3} = (2.3)^{15} \][/tex]
[tex]\[ ((0.9)^4)^3 = (0.9)^{4 \cdot 3} = (0.9)^{12} \][/tex]

4. Combine the Results:
Now we combine these results back into our fraction:
[tex]\[ \frac{(2.3)^{15}}{(0.9)^{12}} \][/tex]

So, the expression after applying the laws of exponents and simplifying becomes:
[tex]\[ \frac{(2.3)^{15}}{(0.9)^{12}} \][/tex]

Thus, the correct multiple-choice answer is:
[tex]\[ \boxed{\frac{(2.3)^{15}}{(0.9)^{12}}} \][/tex]