Select the correct answer.

Which function defines [tex] (f+g)(x) [/tex]?
[tex]\[
\begin{array}{l}
f(x) = \frac{5}{x} + 12 \\
g(x) = \sqrt{x - 3} + 10
\end{array}
\][/tex]

A. [tex] (f+g)(x) = \frac{5}{x} + \sqrt{x} + 19 [/tex]
B. [tex] (f+g)(x) = \frac{\sqrt{x-3} + 5}{x} + 22 [/tex]
C. [tex] (f+g)(x) = \frac{5}{x} + \sqrt{x-3} + 22 [/tex]
D. [tex] (f+g)(x) = \frac{5}{x} - \sqrt{x-3} + 2 [/tex]



Answer :

To find the function [tex]\((f+g)(x)\)[/tex], we need to combine the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] by adding them together. Let's add the expressions given for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].

Given:
[tex]\[ f(x) = \frac{5}{x} + 12 \][/tex]
[tex]\[ g(x) = \sqrt{x-3} + 10 \][/tex]

To find [tex]\( (f+g)(x) \)[/tex], we add the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]

Substituting the given functions into this expression:
[tex]\[ (f+g)(x) = \left(\frac{5}{x} + 12\right) + \left(\sqrt{x-3} + 10\right) \][/tex]

Now, combine the terms:
[tex]\[ (f+g)(x) = \frac{5}{x} + 12 + \sqrt{x-3} + 10 \][/tex]

Combine the constants [tex]\(12\)[/tex] and [tex]\(10\)[/tex]:
[tex]\[ (f+g)(x) = \frac{5}{x} + \sqrt{x-3} + 22 \][/tex]

Thus, the correct function is:
[tex]\[ (f+g)(x) = \frac{5}{x} + \sqrt{x-3} + 22 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{C. \ (f+g)(x) = \frac{5}{x} + \sqrt{x-3} + 22} \][/tex]