Factor completely:

[tex]x^3 + 6x^2 - 9x - 54[/tex]

A. [tex](x + 3)(x - 3)(x + 6)[/tex]
B. [tex](x + 3)(x - 3)(x - 6)[/tex]
C. [tex](x^2 + 9)(x + 6)[/tex]
D. [tex](x^2 - 9)(x + 6)[/tex]



Answer :

To factor the polynomial [tex]\( x^3 + 6x^2 - 9x - 54 \)[/tex] completely, we can follow these steps:

1. Identify a possible rational root:
According to the Rational Root Theorem, any rational root of the polynomial [tex]\( ax^n + bx^{n-1} + \cdots + c \)[/tex] is a factor of the constant term (in this case, -54) divided by a factor of the leading coefficient (in this case, 1). Therefore, possible rational roots are [tex]\( \pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18, \pm 27, \pm 54 \)[/tex].

2. Test the potential roots:
Let's test [tex]\( x = -3 \)[/tex]:
Substitute [tex]\( x = -3 \)[/tex] into the polynomial:
[tex]\[ (-3)^3 + 6(-3)^2 - 9(-3) - 54 = -27 + 54 + 27 - 54 = 0 \][/tex]
So, [tex]\( x = -3 \)[/tex] is a root.

3. Perform polynomial division:
Since [tex]\( x = -3 \)[/tex] is a root, [tex]\( x + 3 \)[/tex] is a factor. Next, we divide [tex]\( x^3 + 6x^2 - 9x - 54 \)[/tex] by [tex]\( x + 3 \)[/tex].

Using synthetic division or long division:
[tex]\[ \begin{array}{r|rrrr} -3 & 1 & 6 & -9 & -54 \\ & & -3 & -9 & 54 \\ \hline & 1 & 3 & -18 & 0 \\ \end{array} \][/tex]
The quotient is [tex]\( x^2 + 3x - 18 \)[/tex], and the remainder is 0.

4. Factor the quotient quadratic polynomial:
Now we need to factor [tex]\( x^2 + 3x - 18 \)[/tex].
We look for two numbers that multiply to [tex]\(-18\)[/tex] and add to [tex]\(3\)[/tex]. These numbers are [tex]\(6\)[/tex] and [tex]\(-3\)[/tex].
So, we can factor [tex]\( x^2 + 3x - 18 \)[/tex] as:
[tex]\[ x^2 + 3x - 18 = (x + 6)(x - 3) \][/tex]

5. Combine the factors:
Therefore, the complete factorization of the original polynomial is:
[tex]\[ x^3 + 6x^2 - 9x - 54 = (x + 3)(x + 6)(x - 3) \][/tex]

Thus, the correct factorization is:
[tex]\[ (x+3)(x-3)(x+6) \][/tex]

The correct answer is:
[tex]\[ (x + 3)(x - 3)(x + 6) \][/tex]