We wish to determine how many grams of [tex]Al \left( NO_3 \right)_3[/tex] can form when 200.0 mL of [tex]0.500 \, M \, Al_2 \left( SO_4 \right)_3[/tex] reacts with excess [tex]Ba \left( NO_3 \right)_2[/tex].

[tex]\[
3 \, Ba \left( NO_3 \right)_2 (aq) + Al_2 \left( SO_4 \right)_3 (aq) \rightarrow 3 \, BaSO_4 (s) + 2 \, Al \left( NO_3 \right)_3 (aq)
\][/tex]

In the previous step, you determined that [tex]0.100 \, mol \, Al_2 \left( SO_4 \right)_3[/tex] reacts. The molar mass of [tex]Al \left( NO_3 \right)_3[/tex] is [tex]213.01 \, g/mol[/tex].

How many grams of [tex]Al \left( NO_3 \right)_3[/tex] can form during the reaction?



Answer :

To determine how many grams of [tex]\(\text{Al(NO}_3\text{)}_3\)[/tex] can form during the reaction, follow these steps:

1. Understand the given information:
- Volume of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex] solution: [tex]\(200.0 \, \text{mL}\)[/tex]
- Molarity of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex] solution: [tex]\(0.500 \, \text{M}\)[/tex]
- Molar mass of [tex]\(\text{Al(NO}_3\text{)}_3\)[/tex]: [tex]\(213.01 \, \text{g/mol}\)[/tex]
- We previously determined that [tex]\(0.100 \, \text{mol Al}_2(\text{SO}_4)_3\)[/tex] reacts.

2. Determine the moles of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex] reacting:
- Given that we already know [tex]\(0.100 \, \text{mol Al}_2(\text{SO}_4)_3\)[/tex] is reacting.

3. Write and balance the chemical equation:
[tex]\[ 3 \, \text{Ba(NO}_3\text{)}_2\text{(aq)} + \text{Al}_2(\text{SO}_4)_3\text{(aq)} \rightarrow 3 \, \text{BaSO}_4\text{(s)} + 2 \, \text{Al(NO}_3\text{)}_3\text{(aq)} \][/tex]

4. Determine the mole ratio between [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex] and [tex]\(\text{Al(NO}_3\text{)}_3\)[/tex]:
- From the balanced equation, [tex]\(1 \, \text{mol Al}_2(\text{SO}_4)_3\)[/tex] produces [tex]\(2 \, \text{mol Al(NO}_3\text{)}_3\)[/tex].

5. Calculate the moles of [tex]\(\text{Al(NO}_3\text{)}_3\)[/tex] produced:
[tex]\[ \text{mol Al(NO}_3\text{)}_3 = 2 \times \text{mol Al}_2(\text{SO}_4)_3 \][/tex]
[tex]\[ \text{mol Al(NO}_3\text{)}_3 = 2 \times 0.100 \, \text{mol} = 0.200 \, \text{mol} \][/tex]

6. Calculate the mass of [tex]\(\text{Al(NO}_3\text{)}_3\)[/tex] produced:
[tex]\[ \text{mass of Al(NO}_3\text{)}_3 = \text{mol Al(NO}_3\text{)}_3 \times \text{molar mass of Al(NO}_3\text{)}_3 \][/tex]
[tex]\[ \text{mass of Al(NO}_3\text{)}_3 = 0.200 \, \text{mol} \times 213.01 \, \text{g/mol} \][/tex]
[tex]\[ \text{mass of Al(NO}_3\text{)}_3 \approx 42.60 \, \text{g} \][/tex]

Therefore, the amount of [tex]\(\text{Al(NO}_3\text{)}_3\)[/tex] that can form during the reaction is approximately [tex]\(42.60 \, \text{g}\)[/tex].