Answer :
To determine how many moles of [tex]\( \text{BaSO}_4 \)[/tex] are formed during the reaction, let's follow these steps in detail:
### Step 1: Write the Balanced Chemical Equation
The balanced chemical equation for the reaction is:
[tex]\[ 3 \text{Ba(NO}_3\text{)}_2(aq) + \text{Al}_2(\text{SO}_4)_3(aq) \rightarrow 3 \text{BaSO}_4(s) + 2 \text{Al(NO}_3\text{)}_3(aq) \][/tex]
### Step 2: Calculate the Moles of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex]
Given:
- Volume of [tex]\(\text{Al}_2(\text{SO}_4)_3(aq)\)[/tex] = 50.0 mL
- Concentration of [tex]\(\text{Al}_2(\text{SO}_4)_3(aq)\)[/tex] = 0.250 M
First, convert the volume from mL to L:
[tex]\[ 50.0 \text{ mL} = 0.0500 \text{ L} \][/tex]
Next, use the concentration to calculate the moles of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex]:
[tex]\[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = \text{Concentration} \times \text{Volume} \][/tex]
[tex]\[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = 0.250 \text{ M} \times 0.0500 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = 0.0125 \text{ mol} \][/tex]
### Step 3: Use Stoichiometry to Determine Moles of [tex]\(\text{BaSO}_4\)[/tex]
From the balanced chemical equation, we see that 1 mole of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex] produces 3 moles of [tex]\(\text{BaSO}_4\)[/tex].
Thus, if we have 0.0125 mol of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex], we can calculate the moles of [tex]\(\text{BaSO}_4\)[/tex] formed as:
[tex]\[ \text{Moles of } \text{BaSO}_4 = 0.0125 \text{ mol} \times 3 \][/tex]
[tex]\[ \text{Moles of } \text{BaSO}_4 = 0.0375 \text{ mol} \][/tex]
### Conclusion
The number of moles of [tex]\(\text{BaSO}_4\)[/tex] that form during the reaction is:
[tex]\[ \boxed{0.0375 \text{ mol}} \][/tex]
### Step 1: Write the Balanced Chemical Equation
The balanced chemical equation for the reaction is:
[tex]\[ 3 \text{Ba(NO}_3\text{)}_2(aq) + \text{Al}_2(\text{SO}_4)_3(aq) \rightarrow 3 \text{BaSO}_4(s) + 2 \text{Al(NO}_3\text{)}_3(aq) \][/tex]
### Step 2: Calculate the Moles of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex]
Given:
- Volume of [tex]\(\text{Al}_2(\text{SO}_4)_3(aq)\)[/tex] = 50.0 mL
- Concentration of [tex]\(\text{Al}_2(\text{SO}_4)_3(aq)\)[/tex] = 0.250 M
First, convert the volume from mL to L:
[tex]\[ 50.0 \text{ mL} = 0.0500 \text{ L} \][/tex]
Next, use the concentration to calculate the moles of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex]:
[tex]\[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = \text{Concentration} \times \text{Volume} \][/tex]
[tex]\[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = 0.250 \text{ M} \times 0.0500 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = 0.0125 \text{ mol} \][/tex]
### Step 3: Use Stoichiometry to Determine Moles of [tex]\(\text{BaSO}_4\)[/tex]
From the balanced chemical equation, we see that 1 mole of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex] produces 3 moles of [tex]\(\text{BaSO}_4\)[/tex].
Thus, if we have 0.0125 mol of [tex]\(\text{Al}_2(\text{SO}_4)_3\)[/tex], we can calculate the moles of [tex]\(\text{BaSO}_4\)[/tex] formed as:
[tex]\[ \text{Moles of } \text{BaSO}_4 = 0.0125 \text{ mol} \times 3 \][/tex]
[tex]\[ \text{Moles of } \text{BaSO}_4 = 0.0375 \text{ mol} \][/tex]
### Conclusion
The number of moles of [tex]\(\text{BaSO}_4\)[/tex] that form during the reaction is:
[tex]\[ \boxed{0.0375 \text{ mol}} \][/tex]