What is the sum of the given polynomials in standard form?

[tex]\[
\left(x^2 - 3x\right) + \left(-2x^2 + 5x - 3\right)
\][/tex]

A. [tex]\(-3x^2 + 8x - 3\)[/tex]
B. [tex]\(-x^2 - 2x - 3\)[/tex]
C. [tex]\(3x^2 - 8x + 3\)[/tex]
D. [tex]\(-x^2 + 2x - 3\)[/tex]



Answer :

To find the sum of the given polynomials [tex]\((x^2 - 3x)\)[/tex] and [tex]\((-2x^2 + 5x - 3)\)[/tex], we need to add their corresponding coefficients.

### Step-by-Step Solution

1. Identify and align the coefficients of corresponding terms:

For the polynomial [tex]\(x^2 - 3x\)[/tex], we can consider it as:
[tex]\[1x^2 + (-3)x + 0\][/tex]

For the polynomial [tex]\(-2x^2 + 5x - 3\)[/tex], we have:
[tex]\[-2x^2 + 5x - 3\][/tex]

2. Add the coefficients of like terms:

- Constant term:
[tex]\[0 + (-3) = -3\][/tex]

- Linear term (x):
[tex]\[-3 + 5 = 2\][/tex]

- Quadratic term (x^2):
[tex]\[1 + (-2) = -1\][/tex]

3. Combine these results to form the polynomial in standard form:
[tex]\[ -1x^2 + 2x - 3 \][/tex]

So, the sum of the polynomials [tex]\((x^2 - 3x) + (-2x^2 + 5x - 3)\)[/tex] in standard form is:

[tex]\[ -1x^2 + 2x - 3 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-x^2 + 2x - 3} \][/tex]