Which expression is equivalent to [tex]\frac{4}{\sqrt{2}}[/tex]?

A. 8
B. [tex]8 \sqrt{2}[/tex]
C. 4
D. [tex]4 \sqrt{2}[/tex]
E. [tex]2 \sqrt{2}[/tex]



Answer :

To find an equivalent expression for [tex]\(\frac{4}{\sqrt{2}}\)[/tex], we need to rationalize the denominator. Here are the steps to do that:

1. Write the original expression:
[tex]\[ \frac{4}{\sqrt{2}} \][/tex]

2. Rationalize the denominator:
To eliminate the square root in the denominator, multiply both the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \][/tex]

3. Simplify the expression:
[tex]\[ \frac{4 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{4 \sqrt{2}}{2} \][/tex]
Since [tex]\(\sqrt{2} \cdot \sqrt{2} = 2\)[/tex], the denominator simplifies to 2.

4. Further simplify the fraction:
Divide the numerator by the denominator:
[tex]\[ \frac{4 \sqrt{2}}{2} = 2 \sqrt{2} \][/tex]

So, the equivalent expression is [tex]\(\boxed{2 \sqrt{2}}\)[/tex].

Thus, the correct answer is (E) [tex]\(2 \sqrt{2}\)[/tex].