If [tex] JM = 5x - 8 [/tex] and [tex] LM = 2x - 6 [/tex], which expression represents [tex] JL [/tex]?

A. [tex] 3x - 2 [/tex]
B. [tex] 3x - 14 [/tex]
C. [tex] 7x - 2 [/tex]
D. [tex] 7x - 14 [/tex]



Answer :

To find the expression for [tex]\( JL \)[/tex], given the expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

we need to determine the relationship between these segments.

The problem infers that [tex]\( JL \)[/tex] is the sum of [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JL = JM + LM \][/tex]

Substitute the given expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

Combine like terms:

[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]
[tex]\[ JL = 7x - 14 \][/tex]

Therefore, the expression that represents [tex]\( JL \)[/tex] is:

[tex]\[ 7x - 14 \][/tex]

Hence, the correct option is:

[tex]\[ 7x - 14 \][/tex]