Answer :

Certainly! Let's calculate the sum of the geometric series
[tex]\[ \sum_{k=1}^4 6^{k-1}. \][/tex]

To find the sum of the first [tex]\( n \)[/tex] terms of a geometric series, we use the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1}, \][/tex]
where:
- [tex]\( a \)[/tex] is the first term,
- [tex]\( r \)[/tex] is the common ratio, and
- [tex]\( n \)[/tex] is the number of terms.

For the series [tex]\(\sum_{k=1}^4 6^{k-1}\)[/tex], we can identify the components as follows:
- The first term [tex]\( a \)[/tex] is [tex]\( 6^{1-1} = 6^0 = 1 \)[/tex],
- The common ratio [tex]\( r \)[/tex] is 6,
- The number of terms [tex]\( n \)[/tex] is 4.

Using the formula for the sum of the first [tex]\( n \)[/tex] terms of a geometric series, we can substitute the values:
[tex]\[ S_4 = 1 \cdot \frac{6^4 - 1}{6 - 1}. \][/tex]

Now, calculate [tex]\( 6^4 \)[/tex]:
[tex]\[ 6^4 = 1296. \][/tex]

Next, substitute this back into the formula:
[tex]\[ S_4 = 1 \cdot \frac{1296 - 1}{5} = \frac{1295}{5}. \][/tex]

Now, perform the division:
[tex]\[ \frac{1295}{5} = 259.0. \][/tex]

Therefore, the sum of the geometric series [tex]\(\sum_{k=1}^4 6^{k-1}\)[/tex] is:
[tex]\[ 1 + 6 + 36 + 216 = 259.0. \][/tex]

So, the sum is [tex]\( 259.0 \)[/tex].