Answered

Select the correct answer.

Consider function [tex]$g$[/tex].
[tex]\[ g(x)=\frac{5}{x-1}+2 \][/tex]

What is the average rate of change of function [tex]$g$[/tex] over the interval [tex]$[-4,3]$[/tex]?

A. [tex]$\frac{1}{2}$[/tex]
B. 2
C. [tex]$-\frac{1}{2}$[/tex]
D. [tex]$-\frac{7}{2}$[/tex]



Answer :

To determine the average rate of change of the function [tex]\( g(x) = \frac{5}{x-1} + 2 \)[/tex] over the interval [tex]\([-4, 3]\)[/tex], follow these steps:

1. Evaluate the function [tex]\( g(x) \)[/tex] at the endpoints of the interval:

- At [tex]\( x = -4 \)[/tex]:
[tex]\[ g(-4) = \frac{5}{-4 - 1} + 2 = \frac{5}{-5} + 2 = -1 + 2 = 1 \][/tex]

- At [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = \frac{5}{3 - 1} + 2 = \frac{5}{2} + 2 = 2.5 + 2 = 4.5 \][/tex]

2. Compute the average rate of change:

The formula for the average rate of change of a function [tex]\( g \)[/tex] over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Average Rate of Change} = \frac{g(b) - g(a)}{b - a} \][/tex]

Here, [tex]\( a = -4 \)[/tex] and [tex]\( b = 3 \)[/tex]:
[tex]\[ \text{Average Rate of Change} = \frac{g(3) - g(-4)}{3 - (-4)} = \frac{4.5 - 1}{3 + 4} = \frac{3.5}{7} = 0.5 \][/tex]

3. Select the correct answer:

The average rate of change of [tex]\( g(x) \)[/tex] over the interval [tex]\([-4, 3]\)[/tex] is [tex]\( 0.5 \)[/tex].

So, the correct answer is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]